Metamath Proof Explorer


Theorem spc2d

Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Hypotheses spc2ed.x xχ
spc2ed.y yχ
spc2ed.1 φx=Ay=Bψχ
Assertion spc2d φAVBWxyψχ

Proof

Step Hyp Ref Expression
1 spc2ed.x xχ
2 spc2ed.y yχ
3 spc2ed.1 φx=Ay=Bψχ
4 2nalexn ¬xyψxy¬ψ
5 4 con1bii ¬xy¬ψxyψ
6 1 nfn x¬χ
7 2 nfn y¬χ
8 3 notbid φx=Ay=B¬ψ¬χ
9 6 7 8 spc2ed φAVBW¬χxy¬ψ
10 9 con1d φAVBW¬xy¬ψχ
11 5 10 biimtrrid φAVBWxyψχ