Metamath Proof Explorer


Theorem sqn0rp

Description: The square of a nonzero real is a positive real. (Contributed by AV, 5-Mar-2023)

Ref Expression
Assertion sqn0rp ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 resqcl ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ )
3 sqgt0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ↑ 2 ) )
4 2 3 elrpd ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℝ+ )