Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
4 |
|
slotsdnscsi |
⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |
5 |
4
|
simp1i |
⊢ ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
6 |
5
|
necomi |
⊢ ( Scalar ‘ ndx ) ≠ ( dist ‘ ndx ) |
7 |
4
|
simp2i |
⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
8 |
7
|
necomi |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( dist ‘ ndx ) |
9 |
4
|
simp3i |
⊢ ( dist ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
10 |
9
|
necomi |
⊢ ( ·𝑖 ‘ ndx ) ≠ ( dist ‘ ndx ) |
11 |
1 2 3 6 8 10
|
sralem |
⊢ ( 𝜑 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |