Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssextss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwb | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) | |
| 2 | df-ss | ⊢ ( 𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ) | |
| 3 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 4 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵 ) | |
| 5 | 3 4 | imbi12i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 7 | 1 2 6 | 3bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |