Step |
Hyp |
Ref |
Expression |
1 |
|
sspba.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
sspba.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
sspba.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
4 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
9 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
10 |
4 5 6 7 8 9 3
|
isssp |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
11 |
10
|
simplbda |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
12 |
11
|
simp1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ) |
13 |
|
rnss |
⊢ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) → ran ( +𝑣 ‘ 𝑊 ) ⊆ ran ( +𝑣 ‘ 𝑈 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ran ( +𝑣 ‘ 𝑊 ) ⊆ ran ( +𝑣 ‘ 𝑈 ) ) |
15 |
2 5
|
bafval |
⊢ 𝑌 = ran ( +𝑣 ‘ 𝑊 ) |
16 |
1 4
|
bafval |
⊢ 𝑋 = ran ( +𝑣 ‘ 𝑈 ) |
17 |
14 15 16
|
3sstr4g |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ 𝑋 ) |