| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspba.x |
|- X = ( BaseSet ` U ) |
| 2 |
|
sspba.y |
|- Y = ( BaseSet ` W ) |
| 3 |
|
sspba.h |
|- H = ( SubSp ` U ) |
| 4 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 5 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
| 6 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 7 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
| 8 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 9 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
| 10 |
4 5 6 7 8 9 3
|
isssp |
|- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
| 11 |
10
|
simplbda |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) |
| 12 |
11
|
simp1d |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( +v ` W ) C_ ( +v ` U ) ) |
| 13 |
|
rnss |
|- ( ( +v ` W ) C_ ( +v ` U ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
| 14 |
12 13
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
| 15 |
2 5
|
bafval |
|- Y = ran ( +v ` W ) |
| 16 |
1 4
|
bafval |
|- X = ran ( +v ` U ) |
| 17 |
14 15 16
|
3sstr4g |
|- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ X ) |