Metamath Proof Explorer


Theorem bafval

Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses bafval.1
|- X = ( BaseSet ` U )
bafval.2
|- G = ( +v ` U )
Assertion bafval
|- X = ran G

Proof

Step Hyp Ref Expression
1 bafval.1
 |-  X = ( BaseSet ` U )
2 bafval.2
 |-  G = ( +v ` U )
3 fveq2
 |-  ( u = U -> ( +v ` u ) = ( +v ` U ) )
4 3 rneqd
 |-  ( u = U -> ran ( +v ` u ) = ran ( +v ` U ) )
5 df-ba
 |-  BaseSet = ( u e. _V |-> ran ( +v ` u ) )
6 fvex
 |-  ( +v ` U ) e. _V
7 6 rnex
 |-  ran ( +v ` U ) e. _V
8 4 5 7 fvmpt
 |-  ( U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) )
9 rn0
 |-  ran (/) = (/)
10 9 eqcomi
 |-  (/) = ran (/)
11 fvprc
 |-  ( -. U e. _V -> ( BaseSet ` U ) = (/) )
12 fvprc
 |-  ( -. U e. _V -> ( +v ` U ) = (/) )
13 12 rneqd
 |-  ( -. U e. _V -> ran ( +v ` U ) = ran (/) )
14 10 11 13 3eqtr4a
 |-  ( -. U e. _V -> ( BaseSet ` U ) = ran ( +v ` U ) )
15 8 14 pm2.61i
 |-  ( BaseSet ` U ) = ran ( +v ` U )
16 2 rneqi
 |-  ran G = ran ( +v ` U )
17 15 1 16 3eqtr4i
 |-  X = ran G