Metamath Proof Explorer


Theorem bafval

Description: Value of the function for the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses bafval.1 X=BaseSetU
bafval.2 G=+vU
Assertion bafval X=ranG

Proof

Step Hyp Ref Expression
1 bafval.1 X=BaseSetU
2 bafval.2 G=+vU
3 fveq2 u=U+vu=+vU
4 3 rneqd u=Uran+vu=ran+vU
5 df-ba BaseSet=uVran+vu
6 fvex +vUV
7 6 rnex ran+vUV
8 4 5 7 fvmpt UVBaseSetU=ran+vU
9 rn0 ran=
10 9 eqcomi =ran
11 fvprc ¬UVBaseSetU=
12 fvprc ¬UV+vU=
13 12 rneqd ¬UVran+vU=ran
14 10 11 13 3eqtr4a ¬UVBaseSetU=ran+vU
15 8 14 pm2.61i BaseSetU=ran+vU
16 2 rneqi ranG=ran+vU
17 15 1 16 3eqtr4i X=ranG