Metamath Proof Explorer


Theorem ssunib

Description: Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion ssunib ( 𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 dfss3 ( 𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑥 𝐵 )
2 eluni2 ( 𝑥 𝐵 ↔ ∃ 𝑦𝐵 𝑥𝑦 )
3 2 ralbii ( ∀ 𝑥𝐴 𝑥 𝐵 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )
4 1 3 bitri ( 𝐴 𝐵 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )