Description: Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-intrabeq | ⊢ ( 𝐴 = 𝐵 → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) | |
2 | 1 | rabbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } = { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 } ) |
3 | 2 | inteqd | ⊢ ( 𝐴 = 𝐵 → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 } ) |