Metamath Proof Explorer


Theorem rp-intrabeq

Description: Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion rp-intrabeq A = B x On | y A y x = x On | y B y x

Proof

Step Hyp Ref Expression
1 raleq A = B y A y x y B y x
2 1 rabbidv A = B x On | y A y x = x On | y B y x
3 2 inteqd A = B x On | y A y x = x On | y B y x