Metamath Proof Explorer


Theorem rp-unirabeq

Description: Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion rp-unirabeq A = B x On | y A x y = x On | y B x y

Proof

Step Hyp Ref Expression
1 raleq A = B y A x y y B x y
2 1 rabbidv A = B x On | y A x y = x On | y B x y
3 2 unieqd A = B x On | y A x y = x On | y B x y