Metamath Proof Explorer


Theorem rp-unirabeq

Description: Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion rp-unirabeq
|- ( A = B -> U. { x e. On | A. y e. A x C_ y } = U. { x e. On | A. y e. B x C_ y } )

Proof

Step Hyp Ref Expression
1 raleq
 |-  ( A = B -> ( A. y e. A x C_ y <-> A. y e. B x C_ y ) )
2 1 rabbidv
 |-  ( A = B -> { x e. On | A. y e. A x C_ y } = { x e. On | A. y e. B x C_ y } )
3 2 unieqd
 |-  ( A = B -> U. { x e. On | A. y e. A x C_ y } = U. { x e. On | A. y e. B x C_ y } )