Description: Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-unirabeq | ⊢ ( 𝐴 = 𝐵 → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 ) ) | |
2 | 1 | rabbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 } ) |
3 | 2 | unieqd | ⊢ ( 𝐴 = 𝐵 → ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 } = ∪ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 } ) |