Metamath Proof Explorer


Theorem onmaxnelsup

Description: Two ways to say the maximum element of a class of ordinals is also the supremum of that class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onmaxnelsup ( 𝐴 ⊆ On → ( ¬ 𝐴 𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 rexnal ( ∃ 𝑥𝐴 ¬ ∃ 𝑦𝐴 𝑥𝑦 ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
2 ralnex ( ∀ 𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∃ 𝑦𝐴 𝑥𝑦 )
3 2 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ↔ ∃ 𝑥𝐴 ¬ ∃ 𝑦𝐴 𝑥𝑦 )
4 ssunib ( 𝐴 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
5 4 notbii ( ¬ 𝐴 𝐴 ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
6 1 3 5 3bitr4ri ( ¬ 𝐴 𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
7 simpl ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝐴 ⊆ On )
8 7 sselda ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑦 ∈ On )
9 ssel2 ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
10 9 adantr ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑥 ∈ On )
11 ontri1 ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦𝑥 ↔ ¬ 𝑥𝑦 ) )
12 8 10 11 syl2anc ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑦𝑥 ↔ ¬ 𝑥𝑦 ) )
13 12 ralbidva ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 𝑦𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑥𝑦 ) )
14 13 rexbidva ( 𝐴 ⊆ On → ( ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 ) )
15 6 14 bitr4id ( 𝐴 ⊆ On → ( ¬ 𝐴 𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 𝑦𝑥 ) )