Step |
Hyp |
Ref |
Expression |
1 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
2 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
3 |
2
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
4 |
|
ssunib |
⊢ ( 𝐴 ⊆ ∪ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
5 |
4
|
notbii |
⊢ ( ¬ 𝐴 ⊆ ∪ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
6 |
1 3 5
|
3bitr4ri |
⊢ ( ¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ On ) |
8 |
7
|
sselda |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
9 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ On ) |
11 |
|
ontri1 |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
13 |
12
|
ralbidva |
⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
14 |
13
|
rexbidva |
⊢ ( 𝐴 ⊆ On → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ 𝑦 ) ) |
15 |
6 14
|
bitr4id |
⊢ ( 𝐴 ⊆ On → ( ¬ 𝐴 ⊆ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) ) |