| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 2 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  ∈  𝑦  ↔  ¬  ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ∈  𝑦  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 4 |  | ssunib | ⊢ ( 𝐴  ⊆  ∪  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 5 | 4 | notbii | ⊢ ( ¬  𝐴  ⊆  ∪  𝐴  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ∈  𝑦 ) | 
						
							| 6 | 1 3 5 | 3bitr4ri | ⊢ ( ¬  𝐴  ⊆  ∪  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ∈  𝑦 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  On ) | 
						
							| 8 | 7 | sselda | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On ) | 
						
							| 9 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 11 |  | ontri1 | ⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝑦  ⊆  𝑥  ↔  ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ⊆  𝑥  ↔  ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 13 | 12 | ralbidva | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ⊆  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 14 | 13 | rexbidva | ⊢ ( 𝐴  ⊆  On  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑦  ⊆  𝑥  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 15 | 6 14 | bitr4id | ⊢ ( 𝐴  ⊆  On  →  ( ¬  𝐴  ⊆  ∪  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑦  ⊆  𝑥 ) ) |