Metamath Proof Explorer


Theorem onsupneqmaxlim0

Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupneqmaxlim0 ( 𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 uniss ( 𝐴 𝐴 𝐴 𝐴 )
2 ssorduni ( 𝐴 ⊆ On → Ord 𝐴 )
3 orduniss ( Ord 𝐴 𝐴 𝐴 )
4 2 3 syl ( 𝐴 ⊆ On → 𝐴 𝐴 )
5 4 biantrud ( 𝐴 ⊆ On → ( 𝐴 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴 ) ) )
6 eqss ( 𝐴 = 𝐴 ↔ ( 𝐴 𝐴 𝐴 𝐴 ) )
7 5 6 bitr4di ( 𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴 ) )
8 1 7 imbitrid ( 𝐴 ⊆ On → ( 𝐴 𝐴 𝐴 = 𝐴 ) )