Metamath Proof Explorer


Theorem onsupneqmaxlim0

Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupneqmaxlim0 A On A A A = A

Proof

Step Hyp Ref Expression
1 uniss A A A A
2 ssorduni A On Ord A
3 orduniss Ord A A A
4 2 3 syl A On A A
5 4 biantrud A On A A A A A A
6 eqss A = A A A A A
7 5 6 bitr4di A On A A A = A
8 1 7 imbitrid A On A A A = A