Metamath Proof Explorer


Theorem starvndxnplusgndx

Description: The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv . (Contributed by AV, 18-Oct-2024)

Ref Expression
Assertion starvndxnplusgndx ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx )

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 2lt4 2 < 4
3 1 2 gtneii 4 ≠ 2
4 starvndx ( *𝑟 ‘ ndx ) = 4
5 plusgndx ( +g ‘ ndx ) = 2
6 4 5 neeq12i ( ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx ) ↔ 4 ≠ 2 )
7 3 6 mpbir ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx )