| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subaddeqd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
subaddeqd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
subaddeqd.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
subaddeqd.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
subaddeqd.1 |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) ) |
| 7 |
3 4
|
addcomd |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) = ( 𝐷 + 𝐶 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 + 𝐷 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
| 9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) ) |
| 10 |
1 4 2
|
pnpcan2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐴 − 𝐷 ) ) |
| 11 |
4 3 2
|
pnpcand |
⊢ ( 𝜑 → ( ( 𝐷 + 𝐶 ) − ( 𝐷 + 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
| 12 |
9 10 11
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 − 𝐷 ) = ( 𝐶 − 𝐵 ) ) |