Metamath Proof Explorer


Theorem subex

Description: The subtraction operation is a set. (Contributed by SN, 5-Jun-2025)

Ref Expression
Assertion subex − ∈ V

Proof

Step Hyp Ref Expression
1 subf − : ( ℂ × ℂ ) ⟶ ℂ
2 cnex ℂ ∈ V
3 2 2 xpex ( ℂ × ℂ ) ∈ V
4 fex2 ( ( − : ( ℂ × ℂ ) ⟶ ℂ ∧ ( ℂ × ℂ ) ∈ V ∧ ℂ ∈ V ) → − ∈ V )
5 1 3 2 4 mp3an − ∈ V