Description: The subfactorial is defined as the number of derangements (see derangval ) of the set ( 1 ... N ) . (Contributed by Mario Carneiro, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
| subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | ||
| Assertion | subfacval | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ 𝑁 ) = ( 𝐷 ‘ ( 1 ... 𝑁 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | derang.d | ⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) | |
| 2 | subfac.n | ⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) | |
| 3 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝐷 ‘ ( 1 ... 𝑛 ) ) = ( 𝐷 ‘ ( 1 ... 𝑁 ) ) ) | 
| 5 | fvex | ⊢ ( 𝐷 ‘ ( 1 ... 𝑁 ) ) ∈ V | |
| 6 | 4 2 5 | fvmpt | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ 𝑁 ) = ( 𝐷 ‘ ( 1 ... 𝑁 ) ) ) |