| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 2 |
|
f1oeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝑥 ) ) |
| 3 |
|
f1oeq3 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 4 |
2 3
|
bitrd |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 5 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ↔ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) ) ) |
| 7 |
6
|
abbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
| 9 |
|
fvex |
⊢ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ∈ V |
| 10 |
8 1 9
|
fvmpt |
⊢ ( 𝐴 ∈ Fin → ( 𝐷 ‘ 𝐴 ) = ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |