| Step | Hyp | Ref | Expression | 
						
							| 1 |  | derang.d | ⊢ 𝐷  =  ( 𝑥  ∈  Fin  ↦  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 2 |  | f1oeq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ↔  𝑓 : 𝐴 –1-1-onto→ 𝑥 ) ) | 
						
							| 3 |  | f1oeq3 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝐴 –1-1-onto→ 𝑥  ↔  𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) | 
						
							| 4 | 2 3 | bitrd | ⊢ ( 𝑥  =  𝐴  →  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ↔  𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 )  ↔  ( 𝑓 : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 7 | 6 | abbidv | ⊢ ( 𝑥  =  𝐴  →  { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) }  =  { 𝑓  ∣  ( 𝑓 : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝑥 –1-1-onto→ 𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) | 
						
							| 9 |  | fvex | ⊢ ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } )  ∈  V | 
						
							| 10 | 8 1 9 | fvmpt | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐷 ‘ 𝐴 )  =  ( ♯ ‘ { 𝑓  ∣  ( 𝑓 : 𝐴 –1-1-onto→ 𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑦 )  ≠  𝑦 ) } ) ) |