| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrecd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | subrecd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | subrecd.3 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | subrecd.4 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 5 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 6 | 5 1 5 2 3 4 | divsubdivd | ⊢ ( 𝜑  →  ( ( 1  /  𝐴 )  −  ( 1  /  𝐵 ) )  =  ( ( ( 1  ·  𝐵 )  −  ( 1  ·  𝐴 ) )  /  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 7 | 2 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝐵 )  =  𝐵 ) | 
						
							| 8 | 1 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝜑  →  ( ( 1  ·  𝐵 )  −  ( 1  ·  𝐴 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1  ·  𝐵 )  −  ( 1  ·  𝐴 ) )  /  ( 𝐴  ·  𝐵 ) )  =  ( ( 𝐵  −  𝐴 )  /  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 11 | 6 10 | eqtrd | ⊢ ( 𝜑  →  ( ( 1  /  𝐴 )  −  ( 1  /  𝐵 ) )  =  ( ( 𝐵  −  𝐴 )  /  ( 𝐴  ·  𝐵 ) ) ) |