Metamath Proof Explorer


Theorem sucunisn

Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025)

Ref Expression
Assertion sucunisn ( 𝐴𝑉 → suc { 𝐴 } = suc 𝐴 )

Proof

Step Hyp Ref Expression
1 unisng ( 𝐴𝑉 { 𝐴 } = 𝐴 )
2 suceq ( { 𝐴 } = 𝐴 → suc { 𝐴 } = suc 𝐴 )
3 1 2 syl ( 𝐴𝑉 → suc { 𝐴 } = suc 𝐴 )