| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 2 |
|
suceq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
| 3 |
1 2
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
| 4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
| 5 |
|
onsucwordi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) ) |
| 6 |
5
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc 𝐴 ⊆ suc 𝐵 ) |
| 7 |
|
ssequn1 |
⊢ ( suc 𝐴 ⊆ suc 𝐵 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 ) |
| 9 |
4 8
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 10 |
|
ssequn2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
| 11 |
|
suceq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
| 12 |
10 11
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
| 14 |
|
onsucwordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴 ) ) |
| 15 |
14
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴 ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc 𝐵 ⊆ suc 𝐴 ) |
| 17 |
|
ssequn2 |
⊢ ( suc 𝐵 ⊆ suc 𝐴 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 ) |
| 18 |
16 17
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 ) |
| 19 |
13 18
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 20 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 21 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 22 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 23 |
20 21 22
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 24 |
9 19 23
|
mpjaodan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 25 |
|
uniprg |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 26 |
|
suceq |
⊢ ( ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
| 28 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
| 29 |
|
onsuc |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
| 30 |
|
uniprg |
⊢ ( ( suc 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ∪ { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 31 |
28 29 30
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 32 |
24 27 31
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = ∪ { suc 𝐴 , suc 𝐵 } ) |