Metamath Proof Explorer


Theorem onsucunipr

Description: The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunipr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc { 𝐴 , 𝐵 } = { suc 𝐴 , suc 𝐵 } )

Proof

Step Hyp Ref Expression
1 ssequn1 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐵 )
2 suceq ( ( 𝐴𝐵 ) = 𝐵 → suc ( 𝐴𝐵 ) = suc 𝐵 )
3 1 2 sylbi ( 𝐴𝐵 → suc ( 𝐴𝐵 ) = suc 𝐵 )
4 3 adantl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → suc ( 𝐴𝐵 ) = suc 𝐵 )
5 onsucwordi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵 ) )
6 5 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → suc 𝐴 ⊆ suc 𝐵 )
7 ssequn1 ( suc 𝐴 ⊆ suc 𝐵 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 )
8 6 7 sylib ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 )
9 4 8 eqtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴𝐵 ) → suc ( 𝐴𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) )
10 ssequn2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐴 )
11 suceq ( ( 𝐴𝐵 ) = 𝐴 → suc ( 𝐴𝐵 ) = suc 𝐴 )
12 10 11 sylbi ( 𝐵𝐴 → suc ( 𝐴𝐵 ) = suc 𝐴 )
13 12 adantl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵𝐴 ) → suc ( 𝐴𝐵 ) = suc 𝐴 )
14 onsucwordi ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐴 → suc 𝐵 ⊆ suc 𝐴 ) )
15 14 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵𝐴 → suc 𝐵 ⊆ suc 𝐴 ) )
16 15 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵𝐴 ) → suc 𝐵 ⊆ suc 𝐴 )
17 ssequn2 ( suc 𝐵 ⊆ suc 𝐴 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 )
18 16 17 sylib ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵𝐴 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 )
19 13 18 eqtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵𝐴 ) → suc ( 𝐴𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) )
20 eloni ( 𝐴 ∈ On → Ord 𝐴 )
21 eloni ( 𝐵 ∈ On → Ord 𝐵 )
22 ordtri2or2 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
23 20 21 22 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐵𝐴 ) )
24 9 19 23 mpjaodan ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) )
25 uniprg ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
26 suceq ( { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) → suc { 𝐴 , 𝐵 } = suc ( 𝐴𝐵 ) )
27 25 26 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc { 𝐴 , 𝐵 } = suc ( 𝐴𝐵 ) )
28 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
29 onsuc ( 𝐵 ∈ On → suc 𝐵 ∈ On )
30 uniprg ( ( suc 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) )
31 28 29 30 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) )
32 24 27 31 3eqtr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc { 𝐴 , 𝐵 } = { suc 𝐴 , suc 𝐵 } )