Step |
Hyp |
Ref |
Expression |
1 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
2 |
|
suceq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐵 ) |
5 |
|
onsucwordi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc 𝐴 ⊆ suc 𝐵 ) |
7 |
|
ssequn1 |
⊢ ( suc 𝐴 ⊆ suc 𝐵 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 ) |
8 |
6 7
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐵 ) |
9 |
4 8
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
10 |
|
ssequn2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
11 |
|
suceq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
12 |
10 11
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc ( 𝐴 ∪ 𝐵 ) = suc 𝐴 ) |
14 |
|
onsucwordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴 ) ) |
15 |
14
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴 ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc 𝐵 ⊆ suc 𝐴 ) |
17 |
|
ssequn2 |
⊢ ( suc 𝐵 ⊆ suc 𝐴 ↔ ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 ) |
18 |
16 17
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( suc 𝐴 ∪ suc 𝐵 ) = suc 𝐴 ) |
19 |
13 18
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
20 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
21 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
22 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
23 |
20 21 22
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
24 |
9 19 23
|
mpjaodan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |
25 |
|
uniprg |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
26 |
|
suceq |
⊢ ( ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = suc ( 𝐴 ∪ 𝐵 ) ) |
28 |
|
onsuc |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
29 |
|
onsuc |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
30 |
|
uniprg |
⊢ ( ( suc 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ∪ { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { suc 𝐴 , suc 𝐵 } = ( suc 𝐴 ∪ suc 𝐵 ) ) |
32 |
24 27 31
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → suc ∪ { 𝐴 , 𝐵 } = ∪ { suc 𝐴 , suc 𝐵 } ) |