| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssequn1 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 2 |  | suceq | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐵  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐵 ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝐴  ⊆  𝐵  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐵 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐵 ) | 
						
							| 5 |  | onsucwordi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  →  suc  𝐴  ⊆  suc  𝐵 ) ) | 
						
							| 6 | 5 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  suc  𝐴  ⊆  suc  𝐵 ) | 
						
							| 7 |  | ssequn1 | ⊢ ( suc  𝐴  ⊆  suc  𝐵  ↔  ( suc  𝐴  ∪  suc  𝐵 )  =  suc  𝐵 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  ( suc  𝐴  ∪  suc  𝐵 )  =  suc  𝐵 ) | 
						
							| 9 | 4 8 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐴  ⊆  𝐵 )  →  suc  ( 𝐴  ∪  𝐵 )  =  ( suc  𝐴  ∪  suc  𝐵 ) ) | 
						
							| 10 |  | ssequn2 | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐴  ∪  𝐵 )  =  𝐴 ) | 
						
							| 11 |  | suceq | ⊢ ( ( 𝐴  ∪  𝐵 )  =  𝐴  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐴 ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( 𝐵  ⊆  𝐴  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐴 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐵  ⊆  𝐴 )  →  suc  ( 𝐴  ∪  𝐵 )  =  suc  𝐴 ) | 
						
							| 14 |  | onsucwordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  suc  𝐵  ⊆  suc  𝐴 ) ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  suc  𝐵  ⊆  suc  𝐴 ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐵  ⊆  𝐴 )  →  suc  𝐵  ⊆  suc  𝐴 ) | 
						
							| 17 |  | ssequn2 | ⊢ ( suc  𝐵  ⊆  suc  𝐴  ↔  ( suc  𝐴  ∪  suc  𝐵 )  =  suc  𝐴 ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐵  ⊆  𝐴 )  →  ( suc  𝐴  ∪  suc  𝐵 )  =  suc  𝐴 ) | 
						
							| 19 | 13 18 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝐵  ⊆  𝐴 )  →  suc  ( 𝐴  ∪  𝐵 )  =  ( suc  𝐴  ∪  suc  𝐵 ) ) | 
						
							| 20 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 21 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 22 |  | ordtri2or2 | ⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) | 
						
							| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ∨  𝐵  ⊆  𝐴 ) ) | 
						
							| 24 | 9 19 23 | mpjaodan | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ( 𝐴  ∪  𝐵 )  =  ( suc  𝐴  ∪  suc  𝐵 ) ) | 
						
							| 25 |  | uniprg | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 26 |  | suceq | ⊢ ( ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  suc  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  suc  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 28 |  | onsuc | ⊢ ( 𝐴  ∈  On  →  suc  𝐴  ∈  On ) | 
						
							| 29 |  | onsuc | ⊢ ( 𝐵  ∈  On  →  suc  𝐵  ∈  On ) | 
						
							| 30 |  | uniprg | ⊢ ( ( suc  𝐴  ∈  On  ∧  suc  𝐵  ∈  On )  →  ∪  { suc  𝐴 ,  suc  𝐵 }  =  ( suc  𝐴  ∪  suc  𝐵 ) ) | 
						
							| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { suc  𝐴 ,  suc  𝐵 }  =  ( suc  𝐴  ∪  suc  𝐵 ) ) | 
						
							| 32 | 24 27 31 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  suc  ∪  { 𝐴 ,  𝐵 }  =  ∪  { suc  𝐴 ,  suc  𝐵 } ) |