Metamath Proof Explorer


Theorem onsucwordi

Description: The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion onsucwordi ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 ordsucsssuc ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) )
5 4 biimpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵 ) )