Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
onsucwordi
Metamath Proof Explorer
Description: The successor operation preserves the less-than-or-equal relationship
between ordinals. Lemma 3.1 of Schloeder p. 7. (Contributed by RP , 29-Jan-2025)
Ref
Expression
Assertion
onsucwordi
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
eloni
⊢ ( 𝐴 ∈ On → Ord 𝐴 )
2
eloni
⊢ ( 𝐵 ∈ On → Ord 𝐵 )
3
ordsucsssuc
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) )
4
1 2 3
syl2an
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵 ) )
5
4
biimpd
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) )