Metamath Proof Explorer


Theorem oalim2cl

Description: The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025)

Ref Expression
Assertion oalim2cl ( ( 𝐴 ∈ On ∧ Lim 𝐵𝐵𝑉 ) → Lim ( 𝐴 +o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ On ∧ Lim 𝐵𝐵𝑉 ) → 𝐴 ∈ On )
2 simp3 ( ( 𝐴 ∈ On ∧ Lim 𝐵𝐵𝑉 ) → 𝐵𝑉 )
3 simp2 ( ( 𝐴 ∈ On ∧ Lim 𝐵𝐵𝑉 ) → Lim 𝐵 )
4 oalimcl ( ( 𝐴 ∈ On ∧ ( 𝐵𝑉 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 +o 𝐵 ) )
5 1 2 3 4 syl12anc ( ( 𝐴 ∈ On ∧ Lim 𝐵𝐵𝑉 ) → Lim ( 𝐴 +o 𝐵 ) )