Description: The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oalim2cl | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → Lim ( 𝐴 +o 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ On ) | |
2 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
3 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → Lim 𝐵 ) | |
4 | oalimcl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝑉 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 +o 𝐵 ) ) | |
5 | 1 2 3 4 | syl12anc | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → Lim ( 𝐴 +o 𝐵 ) ) |