| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limord |
⊢ ( Lim 𝐶 → Ord 𝐶 ) |
| 2 |
|
elex |
⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) → ( Ord 𝐶 ∧ 𝐶 ∈ V ) ) |
| 4 |
|
elon2 |
⊢ ( 𝐶 ∈ On ↔ ( Ord 𝐶 ∧ 𝐶 ∈ V ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ On ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ On ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ On ) |
| 8 |
6 7
|
jca |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
| 9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝐶 ) |
| 10 |
|
oaordi |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
| 11 |
8 9 10
|
sylc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ ( Lim 𝐶 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) |