Metamath Proof Explorer


Theorem oaltublim

Description: Given C is a limit ordinal, the sum of any ordinal with an ordinal less than C is less than the sum of the first ordinal with C . Lemma 3.5 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaltublim ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) )

Proof

Step Hyp Ref Expression
1 limord ( Lim 𝐶 → Ord 𝐶 )
2 elex ( 𝐶𝑉𝐶 ∈ V )
3 1 2 anim12i ( ( Lim 𝐶𝐶𝑉 ) → ( Ord 𝐶𝐶 ∈ V ) )
4 elon2 ( 𝐶 ∈ On ↔ ( Ord 𝐶𝐶 ∈ V ) )
5 3 4 sylibr ( ( Lim 𝐶𝐶𝑉 ) → 𝐶 ∈ On )
6 5 3ad2ant3 ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → 𝐶 ∈ On )
7 simp1 ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → 𝐴 ∈ On )
8 6 7 jca ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) )
9 simp2 ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → 𝐵𝐶 )
10 oaordi ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) )
11 8 9 10 sylc ( ( 𝐴 ∈ On ∧ 𝐵𝐶 ∧ ( Lim 𝐶𝐶𝑉 ) ) → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) )