Metamath Proof Explorer


Theorem oaltublim

Description: Given C is a limit ordinal, the sum of any ordinal with an ordinal less than C is less than the sum of the first ordinal with C . Lemma 3.5 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaltublim A On B C Lim C C V A + 𝑜 B A + 𝑜 C

Proof

Step Hyp Ref Expression
1 limord Lim C Ord C
2 elex C V C V
3 1 2 anim12i Lim C C V Ord C C V
4 elon2 C On Ord C C V
5 3 4 sylibr Lim C C V C On
6 5 3ad2ant3 A On B C Lim C C V C On
7 simp1 A On B C Lim C C V A On
8 6 7 jca A On B C Lim C C V C On A On
9 simp2 A On B C Lim C C V B C
10 oaordi C On A On B C A + 𝑜 B A + 𝑜 C
11 8 9 10 sylc A On B C Lim C C V A + 𝑜 B A + 𝑜 C