Metamath Proof Explorer


Theorem oaltublim

Description: Given C is a limit ordinal, the sum of any ordinal with an ordinal less than C is less than the sum of the first ordinal with C . Lemma 3.5 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaltublim
|- ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> ( A +o B ) e. ( A +o C ) )

Proof

Step Hyp Ref Expression
1 limord
 |-  ( Lim C -> Ord C )
2 elex
 |-  ( C e. V -> C e. _V )
3 1 2 anim12i
 |-  ( ( Lim C /\ C e. V ) -> ( Ord C /\ C e. _V ) )
4 elon2
 |-  ( C e. On <-> ( Ord C /\ C e. _V ) )
5 3 4 sylibr
 |-  ( ( Lim C /\ C e. V ) -> C e. On )
6 5 3ad2ant3
 |-  ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> C e. On )
7 simp1
 |-  ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> A e. On )
8 6 7 jca
 |-  ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> ( C e. On /\ A e. On ) )
9 simp2
 |-  ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> B e. C )
10 oaordi
 |-  ( ( C e. On /\ A e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) )
11 8 9 10 sylc
 |-  ( ( A e. On /\ B e. C /\ ( Lim C /\ C e. V ) ) -> ( A +o B ) e. ( A +o C ) )