Metamath Proof Explorer


Theorem oalim2cl

Description: The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025)

Ref Expression
Assertion oalim2cl A On Lim B B V Lim A + 𝑜 B

Proof

Step Hyp Ref Expression
1 simp1 A On Lim B B V A On
2 simp3 A On Lim B B V B V
3 simp2 A On Lim B B V Lim B
4 oalimcl A On B V Lim B Lim A + 𝑜 B
5 1 2 3 4 syl12anc A On Lim B B V Lim A + 𝑜 B