Description: The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oalim2cl | |- ( ( A e. On /\ Lim B /\ B e. V ) -> Lim ( A +o B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( A e. On /\ Lim B /\ B e. V ) -> A e. On ) |
|
2 | simp3 | |- ( ( A e. On /\ Lim B /\ B e. V ) -> B e. V ) |
|
3 | simp2 | |- ( ( A e. On /\ Lim B /\ B e. V ) -> Lim B ) |
|
4 | oalimcl | |- ( ( A e. On /\ ( B e. V /\ Lim B ) ) -> Lim ( A +o B ) ) |
|
5 | 1 2 3 4 | syl12anc | |- ( ( A e. On /\ Lim B /\ B e. V ) -> Lim ( A +o B ) ) |