Metamath Proof Explorer


Theorem onsucwordi

Description: The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion onsucwordi
|- ( ( A e. On /\ B e. On ) -> ( A C_ B -> suc A C_ suc B ) )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( A e. On -> Ord A )
2 eloni
 |-  ( B e. On -> Ord B )
3 ordsucsssuc
 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> suc A C_ suc B ) )
4 1 2 3 syl2an
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> suc A C_ suc B ) )
5 4 biimpd
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B -> suc A C_ suc B ) )