Description: The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsucwordi | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> suc A C_ suc B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |- ( A e. On -> Ord A ) |
|
2 | eloni | |- ( B e. On -> Ord B ) |
|
3 | ordsucsssuc | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> suc A C_ suc B ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> suc A C_ suc B ) ) |
5 | 4 | biimpd | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> suc A C_ suc B ) ) |