Metamath Proof Explorer


Theorem onsucunipr

Description: The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunipr A On B On suc A B = suc A suc B

Proof

Step Hyp Ref Expression
1 ssequn1 A B A B = B
2 suceq A B = B suc A B = suc B
3 1 2 sylbi A B suc A B = suc B
4 3 adantl A On B On A B suc A B = suc B
5 onsucwordi A On B On A B suc A suc B
6 5 imp A On B On A B suc A suc B
7 ssequn1 suc A suc B suc A suc B = suc B
8 6 7 sylib A On B On A B suc A suc B = suc B
9 4 8 eqtr4d A On B On A B suc A B = suc A suc B
10 ssequn2 B A A B = A
11 suceq A B = A suc A B = suc A
12 10 11 sylbi B A suc A B = suc A
13 12 adantl A On B On B A suc A B = suc A
14 onsucwordi B On A On B A suc B suc A
15 14 ancoms A On B On B A suc B suc A
16 15 imp A On B On B A suc B suc A
17 ssequn2 suc B suc A suc A suc B = suc A
18 16 17 sylib A On B On B A suc A suc B = suc A
19 13 18 eqtr4d A On B On B A suc A B = suc A suc B
20 eloni A On Ord A
21 eloni B On Ord B
22 ordtri2or2 Ord A Ord B A B B A
23 20 21 22 syl2an A On B On A B B A
24 9 19 23 mpjaodan A On B On suc A B = suc A suc B
25 uniprg A On B On A B = A B
26 suceq A B = A B suc A B = suc A B
27 25 26 syl A On B On suc A B = suc A B
28 onsuc A On suc A On
29 onsuc B On suc B On
30 uniprg suc A On suc B On suc A suc B = suc A suc B
31 28 29 30 syl2an A On B On suc A suc B = suc A suc B
32 24 27 31 3eqtr4d A On B On suc A B = suc A suc B