Metamath Proof Explorer


Theorem onsucunitp

Description: The successor to the union of any triple of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion onsucunitp A On B On C On suc A B C = suc A suc B suc C

Proof

Step Hyp Ref Expression
1 onun2 A On B On A B On
2 onsucunipr A B On C On suc A B C = suc A B suc C
3 1 2 sylan A On B On C On suc A B C = suc A B suc C
4 uniprg A On B On A B = A B
5 4 adantr A On B On C On A B = A B
6 unisng C On C = C
7 6 adantl A On B On C On C = C
8 5 7 uneq12d A On B On C On A B C = A B C
9 df-tp A B C = A B C
10 9 unieqi A B C = A B C
11 uniun A B C = A B C
12 10 11 eqtri A B C = A B C
13 12 a1i A On B On C On A B C = A B C
14 uniprg A B On C On A B C = A B C
15 1 14 sylan A On B On C On A B C = A B C
16 8 13 15 3eqtr4d A On B On C On A B C = A B C
17 suceq A B C = A B C suc A B C = suc A B C
18 16 17 syl A On B On C On suc A B C = suc A B C
19 df-tp suc A suc B suc C = suc A suc B suc C
20 19 unieqi suc A suc B suc C = suc A suc B suc C
21 uniun suc A suc B suc C = suc A suc B suc C
22 20 21 eqtri suc A suc B suc C = suc A suc B suc C
23 onsuc A B On suc A B On
24 1 23 syl A On B On suc A B On
25 onsuc C On suc C On
26 uniprg suc A B On suc C On suc A B suc C = suc A B suc C
27 24 25 26 syl2an A On B On C On suc A B suc C = suc A B suc C
28 suceq A B = A B suc A B = suc A B
29 4 28 syl A On B On suc A B = suc A B
30 onsucunipr A On B On suc A B = suc A suc B
31 29 30 eqtr3d A On B On suc A B = suc A suc B
32 31 adantr A On B On C On suc A B = suc A suc B
33 unisng suc C On suc C = suc C
34 25 33 syl C On suc C = suc C
35 34 eqcomd C On suc C = suc C
36 35 adantl A On B On C On suc C = suc C
37 32 36 uneq12d A On B On C On suc A B suc C = suc A suc B suc C
38 27 37 eqtrd A On B On C On suc A B suc C = suc A suc B suc C
39 22 38 eqtr4id A On B On C On suc A suc B suc C = suc A B suc C
40 3 18 39 3eqtr4d A On B On C On suc A B C = suc A suc B suc C
41 40 3impa A On B On C On suc A B C = suc A suc B suc C