Metamath Proof Explorer


Theorem oaun3lem1

Description: The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem1 A On B On Ord x | a A b B x = a + 𝑜 b

Proof

Step Hyp Ref Expression
1 nfv a A On B On
2 nfcv _ a y
3 nfre1 a a A b B x = a + 𝑜 b
4 3 nfsab a z x | a A b B x = a + 𝑜 b
5 2 4 nfralw a z y z x | a A b B x = a + 𝑜 b
6 nfv b A On B On a A
7 nfcv _ b y
8 nfcv _ b A
9 nfre1 b b B x = a + 𝑜 b
10 8 9 nfrexw b a A b B x = a + 𝑜 b
11 10 nfsab b z x | a A b B x = a + 𝑜 b
12 7 11 nfralw b z y z x | a A b B x = a + 𝑜 b
13 simp-4l A On B On a A b B z a + 𝑜 b z a A On
14 simplrl A On B On a A b B z a + 𝑜 b a A
15 14 anim1ci A On B On a A b B z a + 𝑜 b z a z a a A
16 ontr1 A On z a a A z A
17 13 15 16 sylc A On B On a A b B z a + 𝑜 b z a z A
18 simpr A On B On B On
19 ne0i b B B
20 19 adantl a A b B B
21 on0eln0 B On B B
22 21 biimpar B On B B
23 18 20 22 syl2an A On B On a A b B B
24 onelon A On a A a On
25 24 ad2ant2r A On B On a A b B a On
26 simpr a A b B b B
27 onelon B On b B b On
28 18 26 27 syl2an A On B On a A b B b On
29 oacl a On b On a + 𝑜 b On
30 25 28 29 syl2anc A On B On a A b B a + 𝑜 b On
31 onelon a + 𝑜 b On z a + 𝑜 b z On
32 30 31 sylan A On B On a A b B z a + 𝑜 b z On
33 oa0 z On z + 𝑜 = z
34 32 33 syl A On B On a A b B z a + 𝑜 b z + 𝑜 = z
35 34 eqcomd A On B On a A b B z a + 𝑜 b z = z + 𝑜
36 oveq2 y = z + 𝑜 y = z + 𝑜
37 36 rspceeqv B z = z + 𝑜 y B z = z + 𝑜 y
38 23 35 37 syl2an2r A On B On a A b B z a + 𝑜 b y B z = z + 𝑜 y
39 38 adantr A On B On a A b B z a + 𝑜 b z a y B z = z + 𝑜 y
40 oveq1 w = z w + 𝑜 y = z + 𝑜 y
41 40 eqeq2d w = z z = w + 𝑜 y z = z + 𝑜 y
42 41 rexbidv w = z y B z = w + 𝑜 y y B z = z + 𝑜 y
43 42 rspcev z A y B z = z + 𝑜 y w A y B z = w + 𝑜 y
44 17 39 43 syl2anc A On B On a A b B z a + 𝑜 b z a w A y B z = w + 𝑜 y
45 18 adantr A On B On a A b B B On
46 25 45 jca A On B On a A b B a On B On
47 46 adantr A On B On a A b B z a + 𝑜 b a On B On
48 oacl a On B On a + 𝑜 B On
49 25 45 48 syl2anc A On B On a A b B a + 𝑜 B On
50 eloni a + 𝑜 b On Ord a + 𝑜 b
51 eloni a + 𝑜 B On Ord a + 𝑜 B
52 50 51 anim12i a + 𝑜 b On a + 𝑜 B On Ord a + 𝑜 b Ord a + 𝑜 B
53 30 49 52 syl2anc A On B On a A b B Ord a + 𝑜 b Ord a + 𝑜 B
54 45 25 jca A On B On a A b B B On a On
55 26 adantl A On B On a A b B b B
56 oaordi B On a On b B a + 𝑜 b a + 𝑜 B
57 54 55 56 sylc A On B On a A b B a + 𝑜 b a + 𝑜 B
58 ordelpss Ord a + 𝑜 b Ord a + 𝑜 B a + 𝑜 b a + 𝑜 B a + 𝑜 b a + 𝑜 B
59 58 biimpd Ord a + 𝑜 b Ord a + 𝑜 B a + 𝑜 b a + 𝑜 B a + 𝑜 b a + 𝑜 B
60 53 57 59 sylc A On B On a A b B a + 𝑜 b a + 𝑜 B
61 60 pssssd A On B On a A b B a + 𝑜 b a + 𝑜 B
62 61 sselda A On B On a A b B z a + 𝑜 b z a + 𝑜 B
63 62 anim1ci A On B On a A b B z a + 𝑜 b a z a z z a + 𝑜 B
64 oawordex2 a On B On a z z a + 𝑜 B y B a + 𝑜 y = z
65 47 63 64 syl2an2r A On B On a A b B z a + 𝑜 b a z y B a + 𝑜 y = z
66 oveq1 w = a w + 𝑜 y = a + 𝑜 y
67 66 eqeq2d w = a z = w + 𝑜 y z = a + 𝑜 y
68 eqcom z = a + 𝑜 y a + 𝑜 y = z
69 67 68 bitrdi w = a z = w + 𝑜 y a + 𝑜 y = z
70 69 rexbidv w = a y B z = w + 𝑜 y y B a + 𝑜 y = z
71 70 rspcev a A y B a + 𝑜 y = z w A y B z = w + 𝑜 y
72 14 65 71 syl2an2r A On B On a A b B z a + 𝑜 b a z w A y B z = w + 𝑜 y
73 eloni z On Ord z
74 32 73 syl A On B On a A b B z a + 𝑜 b Ord z
75 eloni a On Ord a
76 25 75 syl A On B On a A b B Ord a
77 76 adantr A On B On a A b B z a + 𝑜 b Ord a
78 ordtri2or Ord z Ord a z a a z
79 74 77 78 syl2anc A On B On a A b B z a + 𝑜 b z a a z
80 44 72 79 mpjaodan A On B On a A b B z a + 𝑜 b w A y B z = w + 𝑜 y
81 vex z V
82 eqeq1 x = z x = a + 𝑜 b z = a + 𝑜 b
83 82 2rexbidv x = z a A b B x = a + 𝑜 b a A b B z = a + 𝑜 b
84 oveq1 a = w a + 𝑜 b = w + 𝑜 b
85 84 eqeq2d a = w z = a + 𝑜 b z = w + 𝑜 b
86 oveq2 b = y w + 𝑜 b = w + 𝑜 y
87 86 eqeq2d b = y z = w + 𝑜 b z = w + 𝑜 y
88 85 87 cbvrex2vw a A b B z = a + 𝑜 b w A y B z = w + 𝑜 y
89 83 88 bitrdi x = z a A b B x = a + 𝑜 b w A y B z = w + 𝑜 y
90 81 89 elab z x | a A b B x = a + 𝑜 b w A y B z = w + 𝑜 y
91 80 90 sylibr A On B On a A b B z a + 𝑜 b z x | a A b B x = a + 𝑜 b
92 91 ralrimiva A On B On a A b B z a + 𝑜 b z x | a A b B x = a + 𝑜 b
93 92 adantr A On B On a A b B y = a + 𝑜 b z a + 𝑜 b z x | a A b B x = a + 𝑜 b
94 simpr A On B On a A b B y = a + 𝑜 b y = a + 𝑜 b
95 93 94 raleqtrrdv A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
96 95 exp31 A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
97 96 expdimp A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
98 6 12 97 rexlimd A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
99 98 ex A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
100 1 5 99 rexlimd A On B On a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
101 100 alrimiv A On B On y a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
102 eqeq1 x = y x = a + 𝑜 b y = a + 𝑜 b
103 102 2rexbidv x = y a A b B x = a + 𝑜 b a A b B y = a + 𝑜 b
104 103 ralab y x | a A b B x = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b y a A b B y = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
105 101 104 sylibr A On B On y x | a A b B x = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
106 dftr5 Tr x | a A b B x = a + 𝑜 b y x | a A b B x = a + 𝑜 b z y z x | a A b B x = a + 𝑜 b
107 105 106 sylibr A On B On Tr x | a A b B x = a + 𝑜 b
108 simpr A On B On a A b B x = a + 𝑜 b x = a + 𝑜 b
109 30 adantr A On B On a A b B x = a + 𝑜 b a + 𝑜 b On
110 108 109 eqeltrd A On B On a A b B x = a + 𝑜 b x On
111 110 exp31 A On B On a A b B x = a + 𝑜 b x On
112 111 rexlimdvv A On B On a A b B x = a + 𝑜 b x On
113 112 abssdv A On B On x | a A b B x = a + 𝑜 b On
114 epweon E We On
115 wess x | a A b B x = a + 𝑜 b On E We On E We x | a A b B x = a + 𝑜 b
116 113 114 115 mpisyl A On B On E We x | a A b B x = a + 𝑜 b
117 df-ord Ord x | a A b B x = a + 𝑜 b Tr x | a A b B x = a + 𝑜 b E We x | a A b B x = a + 𝑜 b
118 107 116 117 sylanbrc A On B On Ord x | a A b B x = a + 𝑜 b