| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑎 ( 𝐴  ∈  On  ∧  𝐵  ∈  On ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑎 𝑦 | 
						
							| 3 |  | nfre1 | ⊢ Ⅎ 𝑎 ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) | 
						
							| 4 | 3 | nfsab | ⊢ Ⅎ 𝑎 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } | 
						
							| 5 | 2 4 | nfralw | ⊢ Ⅎ 𝑎 ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑏 ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑎  ∈  𝐴 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑏 𝑦 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑏 𝐴 | 
						
							| 9 |  | nfre1 | ⊢ Ⅎ 𝑏 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) | 
						
							| 10 | 8 9 | nfrexw | ⊢ Ⅎ 𝑏 ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) | 
						
							| 11 | 10 | nfsab | ⊢ Ⅎ 𝑏 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } | 
						
							| 12 | 7 11 | nfralw | ⊢ Ⅎ 𝑏 ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } | 
						
							| 13 |  | simp-4l | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑧  ∈  𝑎 )  →  𝐴  ∈  On ) | 
						
							| 14 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑎  ∈  𝐴 ) | 
						
							| 15 | 14 | anim1ci | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑧  ∈  𝑎 )  →  ( 𝑧  ∈  𝑎  ∧  𝑎  ∈  𝐴 ) ) | 
						
							| 16 |  | ontr1 | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑧  ∈  𝑎  ∧  𝑎  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 17 | 13 15 16 | sylc | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑧  ∈  𝑎 )  →  𝑧  ∈  𝐴 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐵  ∈  On ) | 
						
							| 19 |  | ne0i | ⊢ ( 𝑏  ∈  𝐵  →  𝐵  ≠  ∅ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  𝐵  ≠  ∅ ) | 
						
							| 21 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 22 | 21 | biimpar | ⊢ ( ( 𝐵  ∈  On  ∧  𝐵  ≠  ∅ )  →  ∅  ∈  𝐵 ) | 
						
							| 23 | 18 20 22 | syl2an | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ∅  ∈  𝐵 ) | 
						
							| 24 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  On ) | 
						
							| 25 | 24 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  On ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 27 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  On ) | 
						
							| 28 | 18 26 27 | syl2an | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  On ) | 
						
							| 29 |  | oacl | ⊢ ( ( 𝑎  ∈  On  ∧  𝑏  ∈  On )  →  ( 𝑎  +o  𝑏 )  ∈  On ) | 
						
							| 30 | 25 28 29 | syl2anc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ∈  On ) | 
						
							| 31 |  | onelon | ⊢ ( ( ( 𝑎  +o  𝑏 )  ∈  On  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑧  ∈  On ) | 
						
							| 32 | 30 31 | sylan | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑧  ∈  On ) | 
						
							| 33 |  | oa0 | ⊢ ( 𝑧  ∈  On  →  ( 𝑧  +o  ∅ )  =  𝑧 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  ( 𝑧  +o  ∅ )  =  𝑧 ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑧  =  ( 𝑧  +o  ∅ ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝑧  +o  𝑦 )  =  ( 𝑧  +o  ∅ ) ) | 
						
							| 37 | 36 | rspceeqv | ⊢ ( ( ∅  ∈  𝐵  ∧  𝑧  =  ( 𝑧  +o  ∅ ) )  →  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑧  +o  𝑦 ) ) | 
						
							| 38 | 23 35 37 | syl2an2r | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑧  +o  𝑦 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑧  ∈  𝑎 )  →  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑧  +o  𝑦 ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  +o  𝑦 )  =  ( 𝑧  +o  𝑦 ) ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( 𝑤  =  𝑧  →  ( 𝑧  =  ( 𝑤  +o  𝑦 )  ↔  𝑧  =  ( 𝑧  +o  𝑦 ) ) ) | 
						
							| 42 | 41 | rexbidv | ⊢ ( 𝑤  =  𝑧  →  ( ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 )  ↔  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑧  +o  𝑦 ) ) ) | 
						
							| 43 | 42 | rspcev | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑧  +o  𝑦 ) )  →  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 44 | 17 39 43 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑧  ∈  𝑎 )  →  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 45 | 18 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝐵  ∈  On ) | 
						
							| 46 | 25 45 | jca | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ∈  On  ∧  𝐵  ∈  On ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  ( 𝑎  ∈  On  ∧  𝐵  ∈  On ) ) | 
						
							| 48 |  | oacl | ⊢ ( ( 𝑎  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑎  +o  𝐵 )  ∈  On ) | 
						
							| 49 | 25 45 48 | syl2anc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝐵 )  ∈  On ) | 
						
							| 50 |  | eloni | ⊢ ( ( 𝑎  +o  𝑏 )  ∈  On  →  Ord  ( 𝑎  +o  𝑏 ) ) | 
						
							| 51 |  | eloni | ⊢ ( ( 𝑎  +o  𝐵 )  ∈  On  →  Ord  ( 𝑎  +o  𝐵 ) ) | 
						
							| 52 | 50 51 | anim12i | ⊢ ( ( ( 𝑎  +o  𝑏 )  ∈  On  ∧  ( 𝑎  +o  𝐵 )  ∈  On )  →  ( Ord  ( 𝑎  +o  𝑏 )  ∧  Ord  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 53 | 30 49 52 | syl2anc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( Ord  ( 𝑎  +o  𝑏 )  ∧  Ord  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 54 | 45 25 | jca | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐵  ∈  On  ∧  𝑎  ∈  On ) ) | 
						
							| 55 | 26 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  𝐵 ) | 
						
							| 56 |  | oaordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝑎  ∈  On )  →  ( 𝑏  ∈  𝐵  →  ( 𝑎  +o  𝑏 )  ∈  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 57 | 54 55 56 | sylc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ∈  ( 𝑎  +o  𝐵 ) ) | 
						
							| 58 |  | ordelpss | ⊢ ( ( Ord  ( 𝑎  +o  𝑏 )  ∧  Ord  ( 𝑎  +o  𝐵 ) )  →  ( ( 𝑎  +o  𝑏 )  ∈  ( 𝑎  +o  𝐵 )  ↔  ( 𝑎  +o  𝑏 )  ⊊  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 59 | 58 | biimpd | ⊢ ( ( Ord  ( 𝑎  +o  𝑏 )  ∧  Ord  ( 𝑎  +o  𝐵 ) )  →  ( ( 𝑎  +o  𝑏 )  ∈  ( 𝑎  +o  𝐵 )  →  ( 𝑎  +o  𝑏 )  ⊊  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 60 | 53 57 59 | sylc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ⊊  ( 𝑎  +o  𝐵 ) ) | 
						
							| 61 | 60 | pssssd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ⊆  ( 𝑎  +o  𝐵 ) ) | 
						
							| 62 | 61 | sselda | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑧  ∈  ( 𝑎  +o  𝐵 ) ) | 
						
							| 63 | 62 | anim1ci | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑎  ⊆  𝑧 )  →  ( 𝑎  ⊆  𝑧  ∧  𝑧  ∈  ( 𝑎  +o  𝐵 ) ) ) | 
						
							| 64 |  | oawordex2 | ⊢ ( ( ( 𝑎  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ⊆  𝑧  ∧  𝑧  ∈  ( 𝑎  +o  𝐵 ) ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝑎  +o  𝑦 )  =  𝑧 ) | 
						
							| 65 | 47 63 64 | syl2an2r | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑎  ⊆  𝑧 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑎  +o  𝑦 )  =  𝑧 ) | 
						
							| 66 |  | oveq1 | ⊢ ( 𝑤  =  𝑎  →  ( 𝑤  +o  𝑦 )  =  ( 𝑎  +o  𝑦 ) ) | 
						
							| 67 | 66 | eqeq2d | ⊢ ( 𝑤  =  𝑎  →  ( 𝑧  =  ( 𝑤  +o  𝑦 )  ↔  𝑧  =  ( 𝑎  +o  𝑦 ) ) ) | 
						
							| 68 |  | eqcom | ⊢ ( 𝑧  =  ( 𝑎  +o  𝑦 )  ↔  ( 𝑎  +o  𝑦 )  =  𝑧 ) | 
						
							| 69 | 67 68 | bitrdi | ⊢ ( 𝑤  =  𝑎  →  ( 𝑧  =  ( 𝑤  +o  𝑦 )  ↔  ( 𝑎  +o  𝑦 )  =  𝑧 ) ) | 
						
							| 70 | 69 | rexbidv | ⊢ ( 𝑤  =  𝑎  →  ( ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 )  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑎  +o  𝑦 )  =  𝑧 ) ) | 
						
							| 71 | 70 | rspcev | ⊢ ( ( 𝑎  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 ( 𝑎  +o  𝑦 )  =  𝑧 )  →  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 72 | 14 65 71 | syl2an2r | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  ∧  𝑎  ⊆  𝑧 )  →  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 73 |  | eloni | ⊢ ( 𝑧  ∈  On  →  Ord  𝑧 ) | 
						
							| 74 | 32 73 | syl | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  Ord  𝑧 ) | 
						
							| 75 |  | eloni | ⊢ ( 𝑎  ∈  On  →  Ord  𝑎 ) | 
						
							| 76 | 25 75 | syl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  Ord  𝑎 ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  Ord  𝑎 ) | 
						
							| 78 |  | ordtri2or | ⊢ ( ( Ord  𝑧  ∧  Ord  𝑎 )  →  ( 𝑧  ∈  𝑎  ∨  𝑎  ⊆  𝑧 ) ) | 
						
							| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  ( 𝑧  ∈  𝑎  ∨  𝑎  ⊆  𝑧 ) ) | 
						
							| 80 | 44 72 79 | mpjaodan | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 81 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 82 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( 𝑎  +o  𝑏 )  ↔  𝑧  =  ( 𝑎  +o  𝑏 ) ) ) | 
						
							| 83 | 82 | 2rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 )  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑎  =  𝑤  →  ( 𝑎  +o  𝑏 )  =  ( 𝑤  +o  𝑏 ) ) | 
						
							| 85 | 84 | eqeq2d | ⊢ ( 𝑎  =  𝑤  →  ( 𝑧  =  ( 𝑎  +o  𝑏 )  ↔  𝑧  =  ( 𝑤  +o  𝑏 ) ) ) | 
						
							| 86 |  | oveq2 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑤  +o  𝑏 )  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 87 | 86 | eqeq2d | ⊢ ( 𝑏  =  𝑦  →  ( 𝑧  =  ( 𝑤  +o  𝑏 )  ↔  𝑧  =  ( 𝑤  +o  𝑦 ) ) ) | 
						
							| 88 | 85 87 | cbvrex2vw | ⊢ ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 )  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 89 | 83 88 | bitrdi | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 )  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) ) | 
						
							| 90 | 81 89 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑤  +o  𝑦 ) ) | 
						
							| 91 | 80 90 | sylibr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑧  ∈  ( 𝑎  +o  𝑏 ) )  →  𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 92 | 91 | ralrimiva | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ∀ 𝑧  ∈  ( 𝑎  +o  𝑏 ) 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑦  =  ( 𝑎  +o  𝑏 ) )  →  ∀ 𝑧  ∈  ( 𝑎  +o  𝑏 ) 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 94 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑦  =  ( 𝑎  +o  𝑏 ) )  →  𝑦  =  ( 𝑎  +o  𝑏 ) ) | 
						
							| 95 | 93 94 | raleqtrrdv | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑦  =  ( 𝑎  +o  𝑏 ) )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 96 | 95 | exp31 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) ) | 
						
							| 97 | 96 | expdimp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑏  ∈  𝐵  →  ( 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) ) | 
						
							| 98 | 6 12 97 | rexlimd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑎  ∈  𝐴 )  →  ( ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 99 | 98 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑎  ∈  𝐴  →  ( ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) ) | 
						
							| 100 | 1 5 99 | rexlimd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 101 | 100 | alrimiv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∀ 𝑦 ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 102 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( 𝑎  +o  𝑏 )  ↔  𝑦  =  ( 𝑎  +o  𝑏 ) ) ) | 
						
							| 103 | 102 | 2rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 )  ↔  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 ) ) ) | 
						
							| 104 | 103 | ralab | ⊢ ( ∀ 𝑦  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ↔  ∀ 𝑦 ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝑎  +o  𝑏 )  →  ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 105 | 101 104 | sylibr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∀ 𝑦  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 106 |  | dftr5 | ⊢ ( Tr  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ↔  ∀ 𝑦  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ∀ 𝑧  ∈  𝑦 𝑧  ∈  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  Tr  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 108 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  𝑥  =  ( 𝑎  +o  𝑏 ) ) | 
						
							| 109 | 30 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  ( 𝑎  +o  𝑏 )  ∈  On ) | 
						
							| 110 | 108 109 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  𝑥  ∈  On ) | 
						
							| 111 | 110 | exp31 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑥  =  ( 𝑎  +o  𝑏 )  →  𝑥  ∈  On ) ) ) | 
						
							| 112 | 111 | rexlimdvv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 )  →  𝑥  ∈  On ) ) | 
						
							| 113 | 112 | abssdv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  On ) | 
						
							| 114 |  | epweon | ⊢  E   We  On | 
						
							| 115 |  | wess | ⊢ ( { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  On  →  (  E   We  On  →   E   We  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 116 | 113 114 115 | mpisyl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →   E   We  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 117 |  | df-ord | ⊢ ( Ord  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ↔  ( Tr  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∧   E   We  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 118 | 107 116 117 | sylanbrc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  Ord  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) } ) |