Metamath Proof Explorer


Theorem oaun3lem1

Description: The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )

Proof

Step Hyp Ref Expression
1 nfv 𝑎 ( 𝐴 ∈ On ∧ 𝐵 ∈ On )
2 nfcv 𝑎 𝑦
3 nfre1 𝑎𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 )
4 3 nfsab 𝑎 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) }
5 2 4 nfralw 𝑎𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) }
6 nfv 𝑏 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎𝐴 )
7 nfcv 𝑏 𝑦
8 nfcv 𝑏 𝐴
9 nfre1 𝑏𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 )
10 8 9 nfrexw 𝑏𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 )
11 10 nfsab 𝑏 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) }
12 7 11 nfralw 𝑏𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) }
13 simp-4l ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧𝑎 ) → 𝐴 ∈ On )
14 simplrl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑎𝐴 )
15 14 anim1ci ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧𝑎 ) → ( 𝑧𝑎𝑎𝐴 ) )
16 ontr1 ( 𝐴 ∈ On → ( ( 𝑧𝑎𝑎𝐴 ) → 𝑧𝐴 ) )
17 13 15 16 sylc ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧𝑎 ) → 𝑧𝐴 )
18 simpr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On )
19 ne0i ( 𝑏𝐵𝐵 ≠ ∅ )
20 19 adantl ( ( 𝑎𝐴𝑏𝐵 ) → 𝐵 ≠ ∅ )
21 on0eln0 ( 𝐵 ∈ On → ( ∅ ∈ 𝐵𝐵 ≠ ∅ ) )
22 21 biimpar ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 )
23 18 20 22 syl2an ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ∅ ∈ 𝐵 )
24 onelon ( ( 𝐴 ∈ On ∧ 𝑎𝐴 ) → 𝑎 ∈ On )
25 24 ad2ant2r ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑎 ∈ On )
26 simpr ( ( 𝑎𝐴𝑏𝐵 ) → 𝑏𝐵 )
27 onelon ( ( 𝐵 ∈ On ∧ 𝑏𝐵 ) → 𝑏 ∈ On )
28 18 26 27 syl2an ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑏 ∈ On )
29 oacl ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑎 +o 𝑏 ) ∈ On )
30 25 28 29 syl2anc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ On )
31 onelon ( ( ( 𝑎 +o 𝑏 ) ∈ On ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ On )
32 30 31 sylan ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ On )
33 oa0 ( 𝑧 ∈ On → ( 𝑧 +o ∅ ) = 𝑧 )
34 32 33 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑧 +o ∅ ) = 𝑧 )
35 34 eqcomd ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 = ( 𝑧 +o ∅ ) )
36 oveq2 ( 𝑦 = ∅ → ( 𝑧 +o 𝑦 ) = ( 𝑧 +o ∅ ) )
37 36 rspceeqv ( ( ∅ ∈ 𝐵𝑧 = ( 𝑧 +o ∅ ) ) → ∃ 𝑦𝐵 𝑧 = ( 𝑧 +o 𝑦 ) )
38 23 35 37 syl2an2r ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ∃ 𝑦𝐵 𝑧 = ( 𝑧 +o 𝑦 ) )
39 38 adantr ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧𝑎 ) → ∃ 𝑦𝐵 𝑧 = ( 𝑧 +o 𝑦 ) )
40 oveq1 ( 𝑤 = 𝑧 → ( 𝑤 +o 𝑦 ) = ( 𝑧 +o 𝑦 ) )
41 40 eqeq2d ( 𝑤 = 𝑧 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ 𝑧 = ( 𝑧 +o 𝑦 ) ) )
42 41 rexbidv ( 𝑤 = 𝑧 → ( ∃ 𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ∃ 𝑦𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) )
43 42 rspcev ( ( 𝑧𝐴 ∧ ∃ 𝑦𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) → ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
44 17 39 43 syl2anc ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧𝑎 ) → ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
45 18 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝐵 ∈ On )
46 25 45 jca ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) )
47 46 adantr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) )
48 oacl ( ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑎 +o 𝐵 ) ∈ On )
49 25 45 48 syl2anc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 +o 𝐵 ) ∈ On )
50 eloni ( ( 𝑎 +o 𝑏 ) ∈ On → Ord ( 𝑎 +o 𝑏 ) )
51 eloni ( ( 𝑎 +o 𝐵 ) ∈ On → Ord ( 𝑎 +o 𝐵 ) )
52 50 51 anim12i ( ( ( 𝑎 +o 𝑏 ) ∈ On ∧ ( 𝑎 +o 𝐵 ) ∈ On ) → ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) )
53 30 49 52 syl2anc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) )
54 45 25 jca ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝐵 ∈ On ∧ 𝑎 ∈ On ) )
55 26 adantl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝑏𝐵 )
56 oaordi ( ( 𝐵 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑏𝐵 → ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) ) )
57 54 55 56 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) )
58 ordelpss ( ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) ↔ ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) ) )
59 58 biimpd ( ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) → ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) ) )
60 53 57 59 sylc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) )
61 60 pssssd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +o 𝐵 ) )
62 61 sselda ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ ( 𝑎 +o 𝐵 ) )
63 62 anim1ci ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎𝑧 ) → ( 𝑎𝑧𝑧 ∈ ( 𝑎 +o 𝐵 ) ) )
64 oawordex2 ( ( ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝑧𝑧 ∈ ( 𝑎 +o 𝐵 ) ) ) → ∃ 𝑦𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 )
65 47 63 64 syl2an2r ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎𝑧 ) → ∃ 𝑦𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 )
66 oveq1 ( 𝑤 = 𝑎 → ( 𝑤 +o 𝑦 ) = ( 𝑎 +o 𝑦 ) )
67 66 eqeq2d ( 𝑤 = 𝑎 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ 𝑧 = ( 𝑎 +o 𝑦 ) ) )
68 eqcom ( 𝑧 = ( 𝑎 +o 𝑦 ) ↔ ( 𝑎 +o 𝑦 ) = 𝑧 )
69 67 68 bitrdi ( 𝑤 = 𝑎 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ( 𝑎 +o 𝑦 ) = 𝑧 ) )
70 69 rexbidv ( 𝑤 = 𝑎 → ( ∃ 𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ∃ 𝑦𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) )
71 70 rspcev ( ( 𝑎𝐴 ∧ ∃ 𝑦𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) → ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
72 14 65 71 syl2an2r ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎𝑧 ) → ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
73 eloni ( 𝑧 ∈ On → Ord 𝑧 )
74 32 73 syl ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → Ord 𝑧 )
75 eloni ( 𝑎 ∈ On → Ord 𝑎 )
76 25 75 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → Ord 𝑎 )
77 76 adantr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → Ord 𝑎 )
78 ordtri2or ( ( Ord 𝑧 ∧ Ord 𝑎 ) → ( 𝑧𝑎𝑎𝑧 ) )
79 74 77 78 syl2anc ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑧𝑎𝑎𝑧 ) )
80 44 72 79 mpjaodan ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
81 vex 𝑧 ∈ V
82 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝑎 +o 𝑏 ) ↔ 𝑧 = ( 𝑎 +o 𝑏 ) ) )
83 82 2rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑎𝐴𝑏𝐵 𝑧 = ( 𝑎 +o 𝑏 ) ) )
84 oveq1 ( 𝑎 = 𝑤 → ( 𝑎 +o 𝑏 ) = ( 𝑤 +o 𝑏 ) )
85 84 eqeq2d ( 𝑎 = 𝑤 → ( 𝑧 = ( 𝑎 +o 𝑏 ) ↔ 𝑧 = ( 𝑤 +o 𝑏 ) ) )
86 oveq2 ( 𝑏 = 𝑦 → ( 𝑤 +o 𝑏 ) = ( 𝑤 +o 𝑦 ) )
87 86 eqeq2d ( 𝑏 = 𝑦 → ( 𝑧 = ( 𝑤 +o 𝑏 ) ↔ 𝑧 = ( 𝑤 +o 𝑦 ) ) )
88 85 87 cbvrex2vw ( ∃ 𝑎𝐴𝑏𝐵 𝑧 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
89 83 88 bitrdi ( 𝑥 = 𝑧 → ( ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) )
90 81 89 elab ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∃ 𝑤𝐴𝑦𝐵 𝑧 = ( 𝑤 +o 𝑦 ) )
91 80 90 sylibr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
92 91 ralrimiva ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ∀ 𝑧 ∈ ( 𝑎 +o 𝑏 ) 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
93 92 adantr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → ∀ 𝑧 ∈ ( 𝑎 +o 𝑏 ) 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
94 simpr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → 𝑦 = ( 𝑎 +o 𝑏 ) )
95 93 94 raleqtrrdv ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
96 95 exp31 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) )
97 96 expdimp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎𝐴 ) → ( 𝑏𝐵 → ( 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) )
98 6 12 97 rexlimd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎𝐴 ) → ( ∃ 𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
99 98 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑎𝐴 → ( ∃ 𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) )
100 1 5 99 rexlimd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑎𝐴𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
101 100 alrimiv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑦 ( ∃ 𝑎𝐴𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
102 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑎 +o 𝑏 ) ↔ 𝑦 = ( 𝑎 +o 𝑏 ) ) )
103 102 2rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑎𝐴𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) ) )
104 103 ralab ( ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∀ 𝑦 ( ∃ 𝑎𝐴𝑏𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
105 101 104 sylibr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
106 dftr5 ( Tr { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
107 105 106 sylibr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Tr { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
108 simpr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 = ( 𝑎 +o 𝑏 ) )
109 30 adantr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → ( 𝑎 +o 𝑏 ) ∈ On )
110 108 109 eqeltrd ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎𝐴𝑏𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 ∈ On )
111 110 exp31 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ On ) ) )
112 111 rexlimdvv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ On ) )
113 112 abssdv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ On )
114 epweon E We On
115 wess ( { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ On → ( E We On → E We { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
116 113 114 115 mpisyl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → E We { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
117 df-ord ( Ord { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ( Tr { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∧ E We { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) )
118 107 116 117 sylanbrc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )