| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑦 |
| 3 |
|
nfre1 |
⊢ Ⅎ 𝑎 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) |
| 4 |
3
|
nfsab |
⊢ Ⅎ 𝑎 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } |
| 5 |
2 4
|
nfralw |
⊢ Ⅎ 𝑎 ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } |
| 6 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎 ∈ 𝐴 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑦 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐴 |
| 9 |
|
nfre1 |
⊢ Ⅎ 𝑏 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) |
| 10 |
8 9
|
nfrexw |
⊢ Ⅎ 𝑏 ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) |
| 11 |
10
|
nfsab |
⊢ Ⅎ 𝑏 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } |
| 12 |
7 11
|
nfralw |
⊢ Ⅎ 𝑏 ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } |
| 13 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝐴 ∈ On ) |
| 14 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑎 ∈ 𝐴 ) |
| 15 |
14
|
anim1ci |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑧 ∈ 𝑎 ∧ 𝑎 ∈ 𝐴 ) ) |
| 16 |
|
ontr1 |
⊢ ( 𝐴 ∈ On → ( ( 𝑧 ∈ 𝑎 ∧ 𝑎 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 17 |
13 15 16
|
sylc |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝐴 ) |
| 18 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
| 19 |
|
ne0i |
⊢ ( 𝑏 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ≠ ∅ ) |
| 21 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 22 |
21
|
biimpar |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 ) |
| 23 |
18 20 22
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ∅ ∈ 𝐵 ) |
| 24 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ On ) |
| 25 |
24
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ On ) |
| 26 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
| 27 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ On ) |
| 28 |
18 26 27
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ On ) |
| 29 |
|
oacl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑎 +o 𝑏 ) ∈ On ) |
| 30 |
25 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ On ) |
| 31 |
|
onelon |
⊢ ( ( ( 𝑎 +o 𝑏 ) ∈ On ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ On ) |
| 32 |
30 31
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ On ) |
| 33 |
|
oa0 |
⊢ ( 𝑧 ∈ On → ( 𝑧 +o ∅ ) = 𝑧 ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑧 +o ∅ ) = 𝑧 ) |
| 35 |
34
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 = ( 𝑧 +o ∅ ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 +o 𝑦 ) = ( 𝑧 +o ∅ ) ) |
| 37 |
36
|
rspceeqv |
⊢ ( ( ∅ ∈ 𝐵 ∧ 𝑧 = ( 𝑧 +o ∅ ) ) → ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) |
| 38 |
23 35 37
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧 ∈ 𝑎 ) → ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 +o 𝑦 ) = ( 𝑧 +o 𝑦 ) ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ 𝑧 = ( 𝑧 +o 𝑦 ) ) ) |
| 42 |
41
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) ) |
| 43 |
42
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑧 +o 𝑦 ) ) → ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 44 |
17 39 43
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑧 ∈ 𝑎 ) → ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 45 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐵 ∈ On ) |
| 46 |
25 45
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) ) |
| 48 |
|
oacl |
⊢ ( ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑎 +o 𝐵 ) ∈ On ) |
| 49 |
25 45 48
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝐵 ) ∈ On ) |
| 50 |
|
eloni |
⊢ ( ( 𝑎 +o 𝑏 ) ∈ On → Ord ( 𝑎 +o 𝑏 ) ) |
| 51 |
|
eloni |
⊢ ( ( 𝑎 +o 𝐵 ) ∈ On → Ord ( 𝑎 +o 𝐵 ) ) |
| 52 |
50 51
|
anim12i |
⊢ ( ( ( 𝑎 +o 𝑏 ) ∈ On ∧ ( 𝑎 +o 𝐵 ) ∈ On ) → ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) ) |
| 53 |
30 49 52
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) ) |
| 54 |
45 25
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐵 ∈ On ∧ 𝑎 ∈ On ) ) |
| 55 |
26
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 56 |
|
oaordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑏 ∈ 𝐵 → ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) ) ) |
| 57 |
54 55 56
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) ) |
| 58 |
|
ordelpss |
⊢ ( ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) ↔ ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) ) ) |
| 59 |
58
|
biimpd |
⊢ ( ( Ord ( 𝑎 +o 𝑏 ) ∧ Ord ( 𝑎 +o 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ∈ ( 𝑎 +o 𝐵 ) → ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) ) ) |
| 60 |
53 57 59
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ⊊ ( 𝑎 +o 𝐵 ) ) |
| 61 |
60
|
pssssd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝑎 +o 𝐵 ) ) |
| 62 |
61
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ ( 𝑎 +o 𝐵 ) ) |
| 63 |
62
|
anim1ci |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎 ⊆ 𝑧 ) → ( 𝑎 ⊆ 𝑧 ∧ 𝑧 ∈ ( 𝑎 +o 𝐵 ) ) ) |
| 64 |
|
oawordex2 |
⊢ ( ( ( 𝑎 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ⊆ 𝑧 ∧ 𝑧 ∈ ( 𝑎 +o 𝐵 ) ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) |
| 65 |
47 63 64
|
syl2an2r |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎 ⊆ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) |
| 66 |
|
oveq1 |
⊢ ( 𝑤 = 𝑎 → ( 𝑤 +o 𝑦 ) = ( 𝑎 +o 𝑦 ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑤 = 𝑎 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ 𝑧 = ( 𝑎 +o 𝑦 ) ) ) |
| 68 |
|
eqcom |
⊢ ( 𝑧 = ( 𝑎 +o 𝑦 ) ↔ ( 𝑎 +o 𝑦 ) = 𝑧 ) |
| 69 |
67 68
|
bitrdi |
⊢ ( 𝑤 = 𝑎 → ( 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ( 𝑎 +o 𝑦 ) = 𝑧 ) ) |
| 70 |
69
|
rexbidv |
⊢ ( 𝑤 = 𝑎 → ( ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) ) |
| 71 |
70
|
rspcev |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑎 +o 𝑦 ) = 𝑧 ) → ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 72 |
14 65 71
|
syl2an2r |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) ∧ 𝑎 ⊆ 𝑧 ) → ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 73 |
|
eloni |
⊢ ( 𝑧 ∈ On → Ord 𝑧 ) |
| 74 |
32 73
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → Ord 𝑧 ) |
| 75 |
|
eloni |
⊢ ( 𝑎 ∈ On → Ord 𝑎 ) |
| 76 |
25 75
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → Ord 𝑎 ) |
| 77 |
76
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → Ord 𝑎 ) |
| 78 |
|
ordtri2or |
⊢ ( ( Ord 𝑧 ∧ Ord 𝑎 ) → ( 𝑧 ∈ 𝑎 ∨ 𝑎 ⊆ 𝑧 ) ) |
| 79 |
74 77 78
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ( 𝑧 ∈ 𝑎 ∨ 𝑎 ⊆ 𝑧 ) ) |
| 80 |
44 72 79
|
mpjaodan |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 81 |
|
vex |
⊢ 𝑧 ∈ V |
| 82 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝑎 +o 𝑏 ) ↔ 𝑧 = ( 𝑎 +o 𝑏 ) ) ) |
| 83 |
82
|
2rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) ) ) |
| 84 |
|
oveq1 |
⊢ ( 𝑎 = 𝑤 → ( 𝑎 +o 𝑏 ) = ( 𝑤 +o 𝑏 ) ) |
| 85 |
84
|
eqeq2d |
⊢ ( 𝑎 = 𝑤 → ( 𝑧 = ( 𝑎 +o 𝑏 ) ↔ 𝑧 = ( 𝑤 +o 𝑏 ) ) ) |
| 86 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑤 +o 𝑏 ) = ( 𝑤 +o 𝑦 ) ) |
| 87 |
86
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝑧 = ( 𝑤 +o 𝑏 ) ↔ 𝑧 = ( 𝑤 +o 𝑦 ) ) ) |
| 88 |
85 87
|
cbvrex2vw |
⊢ ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 89 |
83 88
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) ) |
| 90 |
81 89
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑤 +o 𝑦 ) ) |
| 91 |
80 90
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑎 +o 𝑏 ) ) → 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 92 |
91
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ ( 𝑎 +o 𝑏 ) 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 93 |
92
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → ∀ 𝑧 ∈ ( 𝑎 +o 𝑏 ) 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 94 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → 𝑦 = ( 𝑎 +o 𝑏 ) ) |
| 95 |
93 94
|
raleqtrrdv |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑦 = ( 𝑎 +o 𝑏 ) ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 96 |
95
|
exp31 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) ) |
| 97 |
96
|
expdimp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑏 ∈ 𝐵 → ( 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) ) |
| 98 |
6 12 97
|
rexlimd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑎 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 99 |
98
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑎 ∈ 𝐴 → ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) ) |
| 100 |
1 5 99
|
rexlimd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 101 |
100
|
alrimiv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑦 ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 102 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑎 +o 𝑏 ) ↔ 𝑦 = ( 𝑎 +o 𝑏 ) ) ) |
| 103 |
102
|
2rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) ) ) |
| 104 |
103
|
ralab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∀ 𝑦 ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑎 +o 𝑏 ) → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 105 |
101 104
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 106 |
|
dftr5 |
⊢ ( Tr { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ∀ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∀ 𝑧 ∈ 𝑦 𝑧 ∈ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 107 |
105 106
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Tr { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 108 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 = ( 𝑎 +o 𝑏 ) ) |
| 109 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → ( 𝑎 +o 𝑏 ) ∈ On ) |
| 110 |
108 109
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 ∈ On ) |
| 111 |
110
|
exp31 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ On ) ) ) |
| 112 |
111
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ On ) ) |
| 113 |
112
|
abssdv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ On ) |
| 114 |
|
epweon |
⊢ E We On |
| 115 |
|
wess |
⊢ ( { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ On → ( E We On → E We { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 116 |
113 114 115
|
mpisyl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → E We { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |
| 117 |
|
df-ord |
⊢ ( Ord { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ↔ ( Tr { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∧ E We { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) ) |
| 118 |
107 116 117
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ) |