| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  𝑥  =  ( 𝑎  +o  𝑏 ) ) | 
						
							| 2 |  | onelon | ⊢ ( ( 𝐴  ∈  On  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  On ) | 
						
							| 3 | 2 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  On ) | 
						
							| 4 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  On ) | 
						
							| 5 | 4 | ad2ant2l | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  On ) | 
						
							| 6 |  | oacl | ⊢ ( ( 𝑎  ∈  On  ∧  𝑏  ∈  On )  →  ( 𝑎  +o  𝑏 )  ∈  On ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ∈  On ) | 
						
							| 8 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 10 | 7 9 | jca | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑎  +o  𝑏 )  ∈  On  ∧  ( 𝐴  +o  𝐵 )  ∈  On ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  ∈  On ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝐴  ∈  On ) | 
						
							| 13 | 3 12 5 | 3jca | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ∈  On  ∧  𝐴  ∈  On  ∧  𝑏  ∈  On ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  𝑎  ∈  𝐴 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  𝐴 ) | 
						
							| 16 |  | eloni | ⊢ ( 𝑎  ∈  On  →  Ord  𝑎 ) | 
						
							| 17 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 18 | 16 17 | anim12i | ⊢ ( ( 𝑎  ∈  On  ∧  𝐴  ∈  On )  →  ( Ord  𝑎  ∧  Ord  𝐴 ) ) | 
						
							| 19 | 3 12 18 | syl2anc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( Ord  𝑎  ∧  Ord  𝐴 ) ) | 
						
							| 20 |  | ordelpss | ⊢ ( ( Ord  𝑎  ∧  Ord  𝐴 )  →  ( 𝑎  ∈  𝐴  ↔  𝑎  ⊊  𝐴 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ∈  𝐴  ↔  𝑎  ⊊  𝐴 ) ) | 
						
							| 22 | 15 21 | mpbid | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ⊊  𝐴 ) | 
						
							| 23 | 22 | pssssd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ⊆  𝐴 ) | 
						
							| 24 |  | oawordri | ⊢ ( ( 𝑎  ∈  On  ∧  𝐴  ∈  On  ∧  𝑏  ∈  On )  →  ( 𝑎  ⊆  𝐴  →  ( 𝑎  +o  𝑏 )  ⊆  ( 𝐴  +o  𝑏 ) ) ) | 
						
							| 25 | 13 23 24 | sylc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ⊆  ( 𝐴  +o  𝑏 ) ) | 
						
							| 26 |  | pm3.22 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐵  ∈  On  ∧  𝐴  ∈  On ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  𝐵 ) | 
						
							| 30 |  | oaordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝑏  ∈  𝐵  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 31 | 27 29 30 | sylc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 32 | 25 31 | jca | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑎  +o  𝑏 )  ⊆  ( 𝐴  +o  𝑏 )  ∧  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 33 |  | ontr2 | ⊢ ( ( ( 𝑎  +o  𝑏 )  ∈  On  ∧  ( 𝐴  +o  𝐵 )  ∈  On )  →  ( ( ( 𝑎  +o  𝑏 )  ⊆  ( 𝐴  +o  𝑏 )  ∧  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 34 | 10 32 33 | sylc | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  ( 𝑎  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 36 | 1 35 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑥  =  ( 𝑎  +o  𝑏 ) )  →  𝑥  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 37 | 36 | exp31 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑥  =  ( 𝑎  +o  𝑏 )  →  𝑥  ∈  ( 𝐴  +o  𝐵 ) ) ) ) | 
						
							| 38 | 37 | rexlimdvv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 )  →  𝑥  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 39 | 38 | abssdv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 ) ) |