Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 = ( 𝑎 +o 𝑏 ) ) |
2 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ On ) |
3 |
2
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ On ) |
4 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ On ) |
5 |
4
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ On ) |
6 |
|
oacl |
⊢ ( ( 𝑎 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑎 +o 𝑏 ) ∈ On ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ On ) |
8 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
10 |
7 9
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ∈ On ∧ ( 𝐴 +o 𝐵 ) ∈ On ) ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐴 ∈ On ) |
13 |
3 12 5
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On ) ) |
14 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐴 ) |
16 |
|
eloni |
⊢ ( 𝑎 ∈ On → Ord 𝑎 ) |
17 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
18 |
16 17
|
anim12i |
⊢ ( ( 𝑎 ∈ On ∧ 𝐴 ∈ On ) → ( Ord 𝑎 ∧ Ord 𝐴 ) ) |
19 |
3 12 18
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( Ord 𝑎 ∧ Ord 𝐴 ) ) |
20 |
|
ordelpss |
⊢ ( ( Ord 𝑎 ∧ Ord 𝐴 ) → ( 𝑎 ∈ 𝐴 ↔ 𝑎 ⊊ 𝐴 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ∈ 𝐴 ↔ 𝑎 ⊊ 𝐴 ) ) |
22 |
15 21
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ⊊ 𝐴 ) |
23 |
22
|
pssssd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ⊆ 𝐴 ) |
24 |
|
oawordri |
⊢ ( ( 𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On ) → ( 𝑎 ⊆ 𝐴 → ( 𝑎 +o 𝑏 ) ⊆ ( 𝐴 +o 𝑏 ) ) ) |
25 |
13 23 24
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ⊆ ( 𝐴 +o 𝑏 ) ) |
26 |
|
pm3.22 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
28 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
30 |
|
oaordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑏 ∈ 𝐵 → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
31 |
27 29 30
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) |
32 |
25 31
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 +o 𝑏 ) ⊆ ( 𝐴 +o 𝑏 ) ∧ ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
33 |
|
ontr2 |
⊢ ( ( ( 𝑎 +o 𝑏 ) ∈ On ∧ ( 𝐴 +o 𝐵 ) ∈ On ) → ( ( ( 𝑎 +o 𝑏 ) ⊆ ( 𝐴 +o 𝑏 ) ∧ ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
34 |
10 32 33
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → ( 𝑎 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) |
36 |
1 35
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑎 +o 𝑏 ) ) → 𝑥 ∈ ( 𝐴 +o 𝐵 ) ) |
37 |
36
|
exp31 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
38 |
37
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) → 𝑥 ∈ ( 𝐴 +o 𝐵 ) ) ) |
39 |
38
|
abssdv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ) |