Metamath Proof Explorer


Theorem oaun3lem3

Description: The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On )

Proof

Step Hyp Ref Expression
1 oaun3lem1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } )
2 oacl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On )
3 oaun3lem2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) )
4 2 3 ssexd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ V )
5 elon2 ( { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On ↔ ( Ord { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∧ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ V ) )
6 1 4 5 sylanbrc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On )