Metamath Proof Explorer


Theorem oaun3lem4

Description: The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 . (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion oaun3lem4 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 oaun3lem2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) )
2 oaun3lem3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On )
3 oacl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On )
4 onsssuc ( ( { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On ∧ ( 𝐴 +o 𝐵 ) ∈ On ) → ( { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ↔ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) )
5 2 3 4 syl2anc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ↔ { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) )
6 1 5 mpbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎𝐴𝑏𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) )