Step |
Hyp |
Ref |
Expression |
1 |
|
oaun3lem2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ) |
2 |
|
oaun3lem3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On ) |
3 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
4 |
|
onsssuc |
⊢ ( ( { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ On ∧ ( 𝐴 +o 𝐵 ) ∈ On ) → ( { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ↔ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ↔ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) ) |
6 |
1 5
|
mpbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) |