| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oaun3lem2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 ) ) | 
						
							| 2 |  | oaun3lem3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∈  On ) | 
						
							| 3 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 4 |  | onsssuc | ⊢ ( ( { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∈  On  ∧  ( 𝐴  +o  𝐵 )  ∈  On )  →  ( { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 )  ↔  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∈  suc  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 )  ↔  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∈  suc  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 6 | 1 5 | mpbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝑎  +o  𝑏 ) }  ∈  suc  ( 𝐴  +o  𝐵 ) ) |