Metamath Proof Explorer


Theorem oaun3lem4

Description: The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 . (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion oaun3lem4
|- ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. suc ( A +o B ) )

Proof

Step Hyp Ref Expression
1 oaun3lem2
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } C_ ( A +o B ) )
2 oaun3lem3
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. On )
3 oacl
 |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On )
4 onsssuc
 |-  ( ( { x | E. a e. A E. b e. B x = ( a +o b ) } e. On /\ ( A +o B ) e. On ) -> ( { x | E. a e. A E. b e. B x = ( a +o b ) } C_ ( A +o B ) <-> { x | E. a e. A E. b e. B x = ( a +o b ) } e. suc ( A +o B ) ) )
5 2 3 4 syl2anc
 |-  ( ( A e. On /\ B e. On ) -> ( { x | E. a e. A E. b e. B x = ( a +o b ) } C_ ( A +o B ) <-> { x | E. a e. A E. b e. B x = ( a +o b ) } e. suc ( A +o B ) ) )
6 1 5 mpbid
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. suc ( A +o B ) )