Metamath Proof Explorer


Theorem oaun3lem3

Description: The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem3
|- ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. On )

Proof

Step Hyp Ref Expression
1 oaun3lem1
 |-  ( ( A e. On /\ B e. On ) -> Ord { x | E. a e. A E. b e. B x = ( a +o b ) } )
2 oacl
 |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On )
3 oaun3lem2
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } C_ ( A +o B ) )
4 2 3 ssexd
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. _V )
5 elon2
 |-  ( { x | E. a e. A E. b e. B x = ( a +o b ) } e. On <-> ( Ord { x | E. a e. A E. b e. B x = ( a +o b ) } /\ { x | E. a e. A E. b e. B x = ( a +o b ) } e. _V ) )
6 1 4 5 sylanbrc
 |-  ( ( A e. On /\ B e. On ) -> { x | E. a e. A E. b e. B x = ( a +o b ) } e. On )