Metamath Proof Explorer


Theorem oaun3lem4

Description: The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 . (Contributed by RP, 12-Feb-2025)

Ref Expression
Assertion oaun3lem4 AOnBOnx|aAbBx=a+𝑜bsucA+𝑜B

Proof

Step Hyp Ref Expression
1 oaun3lem2 AOnBOnx|aAbBx=a+𝑜bA+𝑜B
2 oaun3lem3 AOnBOnx|aAbBx=a+𝑜bOn
3 oacl AOnBOnA+𝑜BOn
4 onsssuc x|aAbBx=a+𝑜bOnA+𝑜BOnx|aAbBx=a+𝑜bA+𝑜Bx|aAbBx=a+𝑜bsucA+𝑜B
5 2 3 4 syl2anc AOnBOnx|aAbBx=a+𝑜bA+𝑜Bx|aAbBx=a+𝑜bsucA+𝑜B
6 1 5 mpbid AOnBOnx|aAbBx=a+𝑜bsucA+𝑜B