Description: The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oaun3lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | onelon | |
|
3 | 2 | ad2ant2r | |
4 | onelon | |
|
5 | 4 | ad2ant2l | |
6 | oacl | |
|
7 | 3 5 6 | syl2anc | |
8 | oacl | |
|
9 | 8 | adantr | |
10 | 7 9 | jca | |
11 | simpl | |
|
12 | 11 | adantr | |
13 | 3 12 5 | 3jca | |
14 | simpl | |
|
15 | 14 | adantl | |
16 | eloni | |
|
17 | eloni | |
|
18 | 16 17 | anim12i | |
19 | 3 12 18 | syl2anc | |
20 | ordelpss | |
|
21 | 19 20 | syl | |
22 | 15 21 | mpbid | |
23 | 22 | pssssd | |
24 | oawordri | |
|
25 | 13 23 24 | sylc | |
26 | pm3.22 | |
|
27 | 26 | adantr | |
28 | simpr | |
|
29 | 28 | adantl | |
30 | oaordi | |
|
31 | 27 29 30 | sylc | |
32 | 25 31 | jca | |
33 | ontr2 | |
|
34 | 10 32 33 | sylc | |
35 | 34 | adantr | |
36 | 1 35 | eqeltrd | |
37 | 36 | exp31 | |
38 | 37 | rexlimdvv | |
39 | 38 | abssdv | |