Metamath Proof Explorer


Theorem oaun3lem2

Description: The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 . (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3lem2 AOnBOnx|aAbBx=a+𝑜bA+𝑜B

Proof

Step Hyp Ref Expression
1 simpr AOnBOnaAbBx=a+𝑜bx=a+𝑜b
2 onelon AOnaAaOn
3 2 ad2ant2r AOnBOnaAbBaOn
4 onelon BOnbBbOn
5 4 ad2ant2l AOnBOnaAbBbOn
6 oacl aOnbOna+𝑜bOn
7 3 5 6 syl2anc AOnBOnaAbBa+𝑜bOn
8 oacl AOnBOnA+𝑜BOn
9 8 adantr AOnBOnaAbBA+𝑜BOn
10 7 9 jca AOnBOnaAbBa+𝑜bOnA+𝑜BOn
11 simpl AOnBOnAOn
12 11 adantr AOnBOnaAbBAOn
13 3 12 5 3jca AOnBOnaAbBaOnAOnbOn
14 simpl aAbBaA
15 14 adantl AOnBOnaAbBaA
16 eloni aOnOrda
17 eloni AOnOrdA
18 16 17 anim12i aOnAOnOrdaOrdA
19 3 12 18 syl2anc AOnBOnaAbBOrdaOrdA
20 ordelpss OrdaOrdAaAaA
21 19 20 syl AOnBOnaAbBaAaA
22 15 21 mpbid AOnBOnaAbBaA
23 22 pssssd AOnBOnaAbBaA
24 oawordri aOnAOnbOnaAa+𝑜bA+𝑜b
25 13 23 24 sylc AOnBOnaAbBa+𝑜bA+𝑜b
26 pm3.22 AOnBOnBOnAOn
27 26 adantr AOnBOnaAbBBOnAOn
28 simpr aAbBbB
29 28 adantl AOnBOnaAbBbB
30 oaordi BOnAOnbBA+𝑜bA+𝑜B
31 27 29 30 sylc AOnBOnaAbBA+𝑜bA+𝑜B
32 25 31 jca AOnBOnaAbBa+𝑜bA+𝑜bA+𝑜bA+𝑜B
33 ontr2 a+𝑜bOnA+𝑜BOna+𝑜bA+𝑜bA+𝑜bA+𝑜Ba+𝑜bA+𝑜B
34 10 32 33 sylc AOnBOnaAbBa+𝑜bA+𝑜B
35 34 adantr AOnBOnaAbBx=a+𝑜ba+𝑜bA+𝑜B
36 1 35 eqeltrd AOnBOnaAbBx=a+𝑜bxA+𝑜B
37 36 exp31 AOnBOnaAbBx=a+𝑜bxA+𝑜B
38 37 rexlimdvv AOnBOnaAbBx=a+𝑜bxA+𝑜B
39 38 abssdv AOnBOnx|aAbBx=a+𝑜bA+𝑜B