| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 2 | 1 | difexd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ∈  V ) | 
						
							| 3 |  | uniprg | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ∈  V )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ) ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ) ) | 
						
							| 5 |  | undif2 | ⊢ ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) )  =  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) ) | 
						
							| 6 |  | oaword1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  ⊆  ( 𝐴  +o  𝐵 ) ) | 
						
							| 7 |  | ssequn1 | ⊢ ( 𝐴  ⊆  ( 𝐴  +o  𝐵 )  ↔  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 9 | 5 8 | eqtrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 10 | 4 9 | eqtrd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 11 |  | oaun3lem4 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) }  ∈  suc  ( 𝐴  +o  𝐵 ) ) | 
						
							| 12 |  | unisng | ⊢ ( { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) }  ∈  suc  ( 𝐴  +o  𝐵 )  →  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } }  =  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } }  =  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 14 | 10 13 | uneq12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } )  =  ( ( 𝐴  +o  𝐵 )  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } ) ) | 
						
							| 15 |  | uniun | ⊢ ∪  ( { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } )  =  ( ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 16 |  | df-tp | ⊢ { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } }  =  ( { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 17 |  | rp-abid | ⊢ 𝐴  =  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  =  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ) | 
						
							| 19 |  | oadif1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  =  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ) | 
						
							| 20 |  | eqidd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) }  =  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } ) | 
						
							| 21 | 18 19 20 | tpeq123d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } }  =  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 22 | 16 21 | eqtr3id | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } )  =  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 23 | 22 | unieqd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  ( { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } )  =  ∪  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 24 | 15 23 | eqtr3id | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  ∪  ∪  { { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } )  =  ∪  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) | 
						
							| 25 |  | oaun3lem2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 ) ) | 
						
							| 26 |  | ssequn2 | ⊢ ( { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) }  ⊆  ( 𝐴  +o  𝐵 )  ↔  ( ( 𝐴  +o  𝐵 )  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 28 | 14 24 27 | 3eqtr3rd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  =  ∪  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ,  { 𝑧  ∣  ∃ 𝑎  ∈  𝐴 ∃ 𝑏  ∈  𝐵 𝑧  =  ( 𝑎  +o  𝑏 ) } } ) |