Step |
Hyp |
Ref |
Expression |
1 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
2 |
1
|
difexd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V ) |
3 |
|
uniprg |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
5 |
|
undif2 |
⊢ ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) |
6 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |
7 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ↔ ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
9 |
5 8
|
eqtrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 +o 𝐵 ) ) |
10 |
4 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 +o 𝐵 ) ) |
11 |
|
oaun3lem4 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) ) |
12 |
|
unisng |
⊢ ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ∈ suc ( 𝐴 +o 𝐵 ) → ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) |
14 |
10 13
|
uneq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) = ( ( 𝐴 +o 𝐵 ) ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) ) |
15 |
|
uniun |
⊢ ∪ ( { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) = ( ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
16 |
|
df-tp |
⊢ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } = ( { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
17 |
|
rp-abid |
⊢ 𝐴 = { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 = { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } ) |
19 |
|
oadif1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } ) |
20 |
|
eqidd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) |
21 |
18 19 20
|
tpeq123d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } = { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
22 |
16 21
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) = { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
23 |
22
|
unieqd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ ( { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) = ∪ { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
24 |
15 23
|
eqtr3id |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } ∪ ∪ { { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) = ∪ { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |
25 |
|
oaun3lem2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ) |
26 |
|
ssequn2 |
⊢ ( { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ⊆ ( 𝐴 +o 𝐵 ) ↔ ( ( 𝐴 +o 𝐵 ) ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) = ( 𝐴 +o 𝐵 ) ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } ) = ( 𝐴 +o 𝐵 ) ) |
28 |
14 24 27
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ∪ { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } , { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑧 = ( 𝑎 +o 𝑏 ) } } ) |