| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  ∈  On ) | 
						
							| 2 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 3 |  | onelon | ⊢ ( ( ( 𝐴  +o  𝐵 )  ∈  On  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) )  →  𝑦  ∈  On ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) )  →  𝑦  ∈  On ) | 
						
							| 5 |  | ontri1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝐴  ⊆  𝑦  ↔  ¬  𝑦  ∈  𝐴 ) ) | 
						
							| 6 | 1 4 5 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) )  →  ( 𝐴  ⊆  𝑦  ↔  ¬  𝑦  ∈  𝐴 ) ) | 
						
							| 7 | 6 | pm5.32da | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  𝐴  ⊆  𝑦 )  ↔  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) ) ) | 
						
							| 8 |  | ancom | ⊢ ( ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  𝐴  ⊆  𝑦 )  ↔  ( 𝐴  ⊆  𝑦  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 9 | 7 8 | bitr3di | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 )  ↔  ( 𝐴  ⊆  𝑦  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) ) ) ) | 
						
							| 10 |  | oawordex2 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝐴  ⊆  𝑦  ∧  𝑦  ∈  ( 𝐴  +o  𝐵 ) ) )  →  ∃ 𝑏  ∈  𝐵 ( 𝐴  +o  𝑏 )  =  𝑦 ) | 
						
							| 11 | 9 10 | sylbida | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) )  →  ∃ 𝑏  ∈  𝐵 ( 𝐴  +o  𝑏 )  =  𝑦 ) | 
						
							| 12 |  | eqcom | ⊢ ( ( 𝐴  +o  𝑏 )  =  𝑦  ↔  𝑦  =  ( 𝐴  +o  𝑏 ) ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑏  ∈  𝐵 ( 𝐴  +o  𝑏 )  =  𝑦  ↔  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) | 
						
							| 14 | 11 13 | sylib | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) )  →  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 )  →  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  𝑦  =  ( 𝐴  +o  𝑏 ) ) | 
						
							| 17 |  | oaordi | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝑏  ∈  𝐵  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 18 | 17 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑏  ∈  𝐵  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  ( 𝐴  +o  𝑏 )  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 21 | 16 20 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  𝑦  ∈  ( 𝐴  +o  𝐵 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐵  ∈  On ) | 
						
							| 23 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  On ) | 
						
							| 24 | 22 23 | sylan | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  On ) | 
						
							| 25 |  | oaword1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  On )  →  𝐴  ⊆  ( 𝐴  +o  𝑏 ) ) | 
						
							| 26 | 1 24 25 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  𝐴  ⊆  ( 𝐴  +o  𝑏 ) ) | 
						
							| 27 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑏  ∈  On )  →  ( 𝐴  +o  𝑏 )  ∈  On ) | 
						
							| 28 | 1 24 27 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐴  +o  𝑏 )  ∈  On ) | 
						
							| 29 |  | ontri1 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐴  +o  𝑏 )  ∈  On )  →  ( 𝐴  ⊆  ( 𝐴  +o  𝑏 )  ↔  ¬  ( 𝐴  +o  𝑏 )  ∈  𝐴 ) ) | 
						
							| 30 | 1 28 29 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐴  ⊆  ( 𝐴  +o  𝑏 )  ↔  ¬  ( 𝐴  +o  𝑏 )  ∈  𝐴 ) ) | 
						
							| 31 | 26 30 | mpbid | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  →  ¬  ( 𝐴  +o  𝑏 )  ∈  𝐴 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  ¬  ( 𝐴  +o  𝑏 )  ∈  𝐴 ) | 
						
							| 33 | 16 32 | eqneltrd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  ¬  𝑦  ∈  𝐴 ) | 
						
							| 34 | 21 33 | jca | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  𝑏  ∈  𝐵 )  ∧  𝑦  =  ( 𝐴  +o  𝑏 ) )  →  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) ) | 
						
							| 35 | 34 | rexlimdva2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 )  →  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) ) ) | 
						
							| 36 | 15 35 | impbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 )  ↔  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) ) | 
						
							| 37 |  | eldif | ⊢ ( 𝑦  ∈  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ↔  ( 𝑦  ∈  ( 𝐴  +o  𝐵 )  ∧  ¬  𝑦  ∈  𝐴 ) ) | 
						
							| 38 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 39 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( 𝐴  +o  𝑏 )  ↔  𝑦  =  ( 𝐴  +o  𝑏 ) ) ) | 
						
							| 40 | 39 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝐴  +o  𝑏 )  ↔  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) ) | 
						
							| 41 | 38 40 | elab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝐴  +o  𝑏 ) }  ↔  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) ) | 
						
							| 42 | 36 37 41 | 3bitr4g | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑦  ∈  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ↔  𝑦  ∈  { 𝑥  ∣  ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝐴  +o  𝑏 ) } ) ) | 
						
							| 43 | 42 | eqrdv | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  =  { 𝑥  ∣  ∃ 𝑏  ∈  𝐵 𝑥  =  ( 𝐴  +o  𝑏 ) } ) |