Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
2 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
3 |
|
onelon |
⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ On ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) → 𝑦 ∈ On ) |
4 |
2 3
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) → 𝑦 ∈ On ) |
5 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
6 |
1 4 5
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
7 |
6
|
pm5.32da |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ 𝐴 ⊆ 𝑦 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) ) |
8 |
|
ancom |
⊢ ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ 𝐴 ⊆ 𝑦 ) ↔ ( 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) |
9 |
7 8
|
bitr3di |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
10 |
|
oawordex2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) ) → ∃ 𝑏 ∈ 𝐵 ( 𝐴 +o 𝑏 ) = 𝑦 ) |
11 |
9 10
|
sylbida |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 ( 𝐴 +o 𝑏 ) = 𝑦 ) |
12 |
|
eqcom |
⊢ ( ( 𝐴 +o 𝑏 ) = 𝑦 ↔ 𝑦 = ( 𝐴 +o 𝑏 ) ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑏 ∈ 𝐵 ( 𝐴 +o 𝑏 ) = 𝑦 ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) |
14 |
11 13
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) |
15 |
14
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → 𝑦 = ( 𝐴 +o 𝑏 ) ) |
17 |
|
oaordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑏 ∈ 𝐵 → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
18 |
17
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑏 ∈ 𝐵 → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → ( 𝐴 +o 𝑏 ) ∈ ( 𝐴 +o 𝐵 ) ) |
21 |
16 20
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → 𝑦 ∈ ( 𝐴 +o 𝐵 ) ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
23 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ On ) |
24 |
22 23
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ On ) |
25 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝑏 ) ) |
26 |
1 24 25
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → 𝐴 ⊆ ( 𝐴 +o 𝑏 ) ) |
27 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ On ) → ( 𝐴 +o 𝑏 ) ∈ On ) |
28 |
1 24 27
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 +o 𝑏 ) ∈ On ) |
29 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 +o 𝑏 ) ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑏 ) ↔ ¬ ( 𝐴 +o 𝑏 ) ∈ 𝐴 ) ) |
30 |
1 28 29
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑏 ) ↔ ¬ ( 𝐴 +o 𝑏 ) ∈ 𝐴 ) ) |
31 |
26 30
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝐴 +o 𝑏 ) ∈ 𝐴 ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → ¬ ( 𝐴 +o 𝑏 ) ∈ 𝐴 ) |
33 |
16 32
|
eqneltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
34 |
21 33
|
jca |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑦 = ( 𝐴 +o 𝑏 ) ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
35 |
34
|
rexlimdva2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) → ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) ) |
36 |
15 35
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) ) |
37 |
|
eldif |
⊢ ( 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ ( 𝑦 ∈ ( 𝐴 +o 𝐵 ) ∧ ¬ 𝑦 ∈ 𝐴 ) ) |
38 |
|
vex |
⊢ 𝑦 ∈ V |
39 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝐴 +o 𝑏 ) ↔ 𝑦 = ( 𝐴 +o 𝑏 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝐴 +o 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) ) |
41 |
38 40
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝐴 +o 𝑏 ) } ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) ) |
42 |
36 37 41
|
3bitr4g |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ↔ 𝑦 ∈ { 𝑥 ∣ ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝐴 +o 𝑏 ) } ) ) |
43 |
42
|
eqrdv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = { 𝑥 ∣ ∃ 𝑏 ∈ 𝐵 𝑥 = ( 𝐴 +o 𝑏 ) } ) |