Step |
Hyp |
Ref |
Expression |
1 |
|
oacl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) |
2 |
1
|
difexd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V ) |
3 |
|
uniprg |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) ) |
5 |
|
rp-abid |
⊢ 𝐴 = { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 = { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } ) |
7 |
|
oadif1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } ) |
8 |
6 7
|
preq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } ) |
9 |
8
|
unieqd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ∪ { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } ) |
10 |
|
undif2 |
⊢ ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) |
11 |
|
oaword1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ) |
12 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ↔ ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
14 |
10 13
|
eqtrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 +o 𝐵 ) ) |
15 |
4 9 14
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ∪ { { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } ) |