| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oacl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  ∈  On ) | 
						
							| 2 | 1 | difexd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ∈  V ) | 
						
							| 3 |  | uniprg | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  ∈  V )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ) ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) ) ) | 
						
							| 5 |  | rp-abid | ⊢ 𝐴  =  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  =  { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ) | 
						
							| 7 |  | oadif1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 )  =  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } ) | 
						
							| 8 | 6 7 | preq12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } } ) | 
						
							| 9 | 8 | unieqd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ∪  { 𝐴 ,  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) }  =  ∪  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } } ) | 
						
							| 10 |  | undif2 | ⊢ ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) )  =  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) ) | 
						
							| 11 |  | oaword1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐴  ⊆  ( 𝐴  +o  𝐵 ) ) | 
						
							| 12 |  | ssequn1 | ⊢ ( 𝐴  ⊆  ( 𝐴  +o  𝐵 )  ↔  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  ( 𝐴  +o  𝐵 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 14 | 10 13 | eqtrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ∪  ( ( 𝐴  +o  𝐵 )  ∖  𝐴 ) )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 15 | 4 9 14 | 3eqtr3rd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  +o  𝐵 )  =  ∪  { { 𝑥  ∣  ∃ 𝑎  ∈  𝐴 𝑥  =  𝑎 } ,  { 𝑦  ∣  ∃ 𝑏  ∈  𝐵 𝑦  =  ( 𝐴  +o  𝑏 ) } } ) |