Metamath Proof Explorer


Theorem oaun2

Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = { { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } )

Proof

Step Hyp Ref Expression
1 oacl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On )
2 1 difexd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V )
3 uniprg ( ( 𝐴 ∈ On ∧ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ∈ V ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) )
4 2 3 syldan ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) )
5 rp-abid 𝐴 = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 }
6 5 a1i ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 = { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 } )
7 oadif1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } )
8 6 7 preq12d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = { { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } )
9 8 unieqd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝐴 , ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) } = { { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } )
10 undif2 ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) )
11 oaword1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝐵 ) )
12 ssequn1 ( 𝐴 ⊆ ( 𝐴 +o 𝐵 ) ↔ ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) )
13 11 12 sylib ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) )
14 10 13 eqtrid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ ( ( 𝐴 +o 𝐵 ) ∖ 𝐴 ) ) = ( 𝐴 +o 𝐵 ) )
15 4 9 14 3eqtr3rd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = { { 𝑥 ∣ ∃ 𝑎𝐴 𝑥 = 𝑎 } , { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = ( 𝐴 +o 𝑏 ) } } )