Metamath Proof Explorer


Theorem oaun2

Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun2
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) = U. { { x | E. a e. A x = a } , { y | E. b e. B y = ( A +o b ) } } )

Proof

Step Hyp Ref Expression
1 oacl
 |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On )
2 1 difexd
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) \ A ) e. _V )
3 uniprg
 |-  ( ( A e. On /\ ( ( A +o B ) \ A ) e. _V ) -> U. { A , ( ( A +o B ) \ A ) } = ( A u. ( ( A +o B ) \ A ) ) )
4 2 3 syldan
 |-  ( ( A e. On /\ B e. On ) -> U. { A , ( ( A +o B ) \ A ) } = ( A u. ( ( A +o B ) \ A ) ) )
5 rp-abid
 |-  A = { x | E. a e. A x = a }
6 5 a1i
 |-  ( ( A e. On /\ B e. On ) -> A = { x | E. a e. A x = a } )
7 oadif1
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +o B ) \ A ) = { y | E. b e. B y = ( A +o b ) } )
8 6 7 preq12d
 |-  ( ( A e. On /\ B e. On ) -> { A , ( ( A +o B ) \ A ) } = { { x | E. a e. A x = a } , { y | E. b e. B y = ( A +o b ) } } )
9 8 unieqd
 |-  ( ( A e. On /\ B e. On ) -> U. { A , ( ( A +o B ) \ A ) } = U. { { x | E. a e. A x = a } , { y | E. b e. B y = ( A +o b ) } } )
10 undif2
 |-  ( A u. ( ( A +o B ) \ A ) ) = ( A u. ( A +o B ) )
11 oaword1
 |-  ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) )
12 ssequn1
 |-  ( A C_ ( A +o B ) <-> ( A u. ( A +o B ) ) = ( A +o B ) )
13 11 12 sylib
 |-  ( ( A e. On /\ B e. On ) -> ( A u. ( A +o B ) ) = ( A +o B ) )
14 10 13 eqtrid
 |-  ( ( A e. On /\ B e. On ) -> ( A u. ( ( A +o B ) \ A ) ) = ( A +o B ) )
15 4 9 14 3eqtr3rd
 |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) = U. { { x | E. a e. A x = a } , { y | E. b e. B y = ( A +o b ) } } )