Metamath Proof Explorer


Theorem uniprg

Description: The union of a pair is the union of its members. Proposition 5.7 of TakeutiZaring p. 16. (Contributed by NM, 25-Aug-2006)

Ref Expression
Assertion uniprg
|- ( ( A e. V /\ B e. W ) -> U. { A , B } = ( A u. B ) )

Proof

Step Hyp Ref Expression
1 preq1
 |-  ( x = A -> { x , y } = { A , y } )
2 1 unieqd
 |-  ( x = A -> U. { x , y } = U. { A , y } )
3 uneq1
 |-  ( x = A -> ( x u. y ) = ( A u. y ) )
4 2 3 eqeq12d
 |-  ( x = A -> ( U. { x , y } = ( x u. y ) <-> U. { A , y } = ( A u. y ) ) )
5 preq2
 |-  ( y = B -> { A , y } = { A , B } )
6 5 unieqd
 |-  ( y = B -> U. { A , y } = U. { A , B } )
7 uneq2
 |-  ( y = B -> ( A u. y ) = ( A u. B ) )
8 6 7 eqeq12d
 |-  ( y = B -> ( U. { A , y } = ( A u. y ) <-> U. { A , B } = ( A u. B ) ) )
9 vex
 |-  x e. _V
10 vex
 |-  y e. _V
11 9 10 unipr
 |-  U. { x , y } = ( x u. y )
12 4 8 11 vtocl2g
 |-  ( ( A e. V /\ B e. W ) -> U. { A , B } = ( A u. B ) )