Metamath Proof Explorer


Theorem oadif1

Description: Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oadif1 A On B On A + 𝑜 B A = x | b B x = A + 𝑜 b

Proof

Step Hyp Ref Expression
1 simpl A On B On A On
2 oacl A On B On A + 𝑜 B On
3 onelon A + 𝑜 B On y A + 𝑜 B y On
4 2 3 sylan A On B On y A + 𝑜 B y On
5 ontri1 A On y On A y ¬ y A
6 1 4 5 syl2an2r A On B On y A + 𝑜 B A y ¬ y A
7 6 pm5.32da A On B On y A + 𝑜 B A y y A + 𝑜 B ¬ y A
8 ancom y A + 𝑜 B A y A y y A + 𝑜 B
9 7 8 bitr3di A On B On y A + 𝑜 B ¬ y A A y y A + 𝑜 B
10 oawordex2 A On B On A y y A + 𝑜 B b B A + 𝑜 b = y
11 9 10 sylbida A On B On y A + 𝑜 B ¬ y A b B A + 𝑜 b = y
12 eqcom A + 𝑜 b = y y = A + 𝑜 b
13 12 rexbii b B A + 𝑜 b = y b B y = A + 𝑜 b
14 11 13 sylib A On B On y A + 𝑜 B ¬ y A b B y = A + 𝑜 b
15 14 ex A On B On y A + 𝑜 B ¬ y A b B y = A + 𝑜 b
16 simpr A On B On b B y = A + 𝑜 b y = A + 𝑜 b
17 oaordi B On A On b B A + 𝑜 b A + 𝑜 B
18 17 ancoms A On B On b B A + 𝑜 b A + 𝑜 B
19 18 imp A On B On b B A + 𝑜 b A + 𝑜 B
20 19 adantr A On B On b B y = A + 𝑜 b A + 𝑜 b A + 𝑜 B
21 16 20 eqeltrd A On B On b B y = A + 𝑜 b y A + 𝑜 B
22 simpr A On B On B On
23 onelon B On b B b On
24 22 23 sylan A On B On b B b On
25 oaword1 A On b On A A + 𝑜 b
26 1 24 25 syl2an2r A On B On b B A A + 𝑜 b
27 oacl A On b On A + 𝑜 b On
28 1 24 27 syl2an2r A On B On b B A + 𝑜 b On
29 ontri1 A On A + 𝑜 b On A A + 𝑜 b ¬ A + 𝑜 b A
30 1 28 29 syl2an2r A On B On b B A A + 𝑜 b ¬ A + 𝑜 b A
31 26 30 mpbid A On B On b B ¬ A + 𝑜 b A
32 31 adantr A On B On b B y = A + 𝑜 b ¬ A + 𝑜 b A
33 16 32 eqneltrd A On B On b B y = A + 𝑜 b ¬ y A
34 21 33 jca A On B On b B y = A + 𝑜 b y A + 𝑜 B ¬ y A
35 34 rexlimdva2 A On B On b B y = A + 𝑜 b y A + 𝑜 B ¬ y A
36 15 35 impbid A On B On y A + 𝑜 B ¬ y A b B y = A + 𝑜 b
37 eldif y A + 𝑜 B A y A + 𝑜 B ¬ y A
38 vex y V
39 eqeq1 x = y x = A + 𝑜 b y = A + 𝑜 b
40 39 rexbidv x = y b B x = A + 𝑜 b b B y = A + 𝑜 b
41 38 40 elab y x | b B x = A + 𝑜 b b B y = A + 𝑜 b
42 36 37 41 3bitr4g A On B On y A + 𝑜 B A y x | b B x = A + 𝑜 b
43 42 eqrdv A On B On A + 𝑜 B A = x | b B x = A + 𝑜 b